
SIMULATED ANNEALING
Advanced Algorithms Course

1

Motivation

Finding a good solution to an optimization problem.
Good does not mean perfect.
Trying to minimize the cost of travelling is a good
example

2

Hill climbing

Our first approach will be the rather naïve Hill
Climbing algorithm.
The basic idea of Hill Climbing is:
1. Choose a starting point.
2. Try to improve solution
3. If no further improvements are possible then stop.

3

Hill climbing

It is like the algorithm is climbing a hill and tries to
find the top, where the best solution is.
It can only take steps to take it uphill.
This means it can stop before finding the best
solution.

4

Image source: http://katrinaeg.com/simulated-annealing.html

Hill climbing

The biggest hill is the global maximum.
The top of any other hill is a local maximum.

5

Hill climbing

We need to define the initial solution:
• Randomly generate a sequence o cities.

6

city(a,45,95).
city(b,90,95).
city(c,15,85).
city(d,40,80).
city(e,70,80).
city(f,25,65).
city(g,65,65).
city(h,45,55).
city(i,5,50).
city(j,80,50).
city(l,65,45).
city(m,25,40).
city(n,55,30).
city(o,80,30).
city(p,25,15).
city(q,80,15).
city(r,55,10).

Hill climbing

We need to define the initial solution:
• Randomly generate a sequence of cities.

7

initialSolution(Orig,L):-
 findall(X,(city(X,_,_),X\=Orig),L1),
 random_permutation(L1,L).

?-initialSolution(a,L)

Hill climbing

We need to define the initial solution:
• Randomly generate a sequence of cities.

8

initialSolution(Orig,L):-
 findall(X,(city(X,_,_),X\=Orig),L1),
 random_permutation(L1,L).

?-initialSolution(a,L)

L = [b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o]

Hill climbing

Now, we need to evaluate the solution:
• Compute the total distance.

9

distance(C1,C2,Dist):-
 city(C1,X1,Y1),
 city(C2,X2,Y2),
 DX is X1-X2,
 DY is Y1-Y2,
 Dist is sqrt(DX*DX+DY*DY).

Hill climbing

Now, we need to evaluate the solution:
• Compute the total distance.

10

distance(C1,C2,Dist):-
 city(C1,X1,Y1),
 city(C2,X2,Y2),
 DX is X1-X2,
 DY is Y1-Y2,
 Dist is sqrt(DX*DX+DY*DY).

?-distance(a,n,D).
D = 65.76

Hill climbing

Now, we need to evaluate the solution:
• Compute the total distance.

11

totalDistance([],0).
totalDistance([_],0).
totalDistance([X,Y|L],T):-
 distance(X,Y,Cl),
 totalDistance([Y|L],T1),
 T is T1 + Cl.

Hill climbing

Now, we need to evaluate the solution:
• Compute the total distance.

12

totalDistance([],0).
totalDistance([_],0).
totalDistance([X,Y|L],T):-
 distance(X,Y,Cl),
 totalDistance([Y|L],T1),
 T is T1 + Cl.

?-totalDistance([a,b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o,a],D).
D = 761

Hill climbing

Now, we need to evaluate the solution:
• Compute the total distance.

13

totalDistance([],0).
totalDistance([_],0).
totalDistance([X,Y|L],T):-
 distance(X,Y,Cl),
 totalDistance([Y|L],T1),
 T is T1 + Cl.

?-totalDistance([a,b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o,a],D).
D = 761

Goal: M
inim

ize this
!

Hill climbing

Compute adjacent solutions:
• Lets swap two random elements

14

newAdjacent(S1,Sn):-
 length(S1,T1),
 random_between(1,T1,Pos1),
 random_between(1,T1,Pos2),
 nth1(Pos1,S1,E1),
 nth1(Pos2,S1,E2),
 removeElementPos(Pos1,S1,S2),
 insertElementPos(Pos1,E2,S2,S3),
 removeElementPos(Pos2,S3,S4),
 insertElementPos(Pos2,E1,S4,Sn).

Hill climbing

Compute adjacent solutions:
• Lets swap two random elements

15

newAdjacent(S1,Sn):-
 length(S1,T1),
 random_between(1,T1,Pos1),
 random_between(1,T1,Pos2),
 nth1(Pos1,S1,E1),
 nth1(Pos2,S1,E2),
 removeElementPos(Pos1,S1,S2),
 insertElementPos(Pos1,E2,S2,S3),
 removeElementPos(Pos2,S3,S4),
 insertElementPos(Pos2,E1,S4,Sn).

?-newAdjacent([b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o],NA).
NA = [b,r,c,d,h,l,g,p,n,e,i,m,f,j,q,o]

Hill climbing

Compute adjacent solutions:
• Lets swap two random elements

16

newAdjacent(S1,Sn):-
 length(S1,T1),
 random_between(1,T1,Pos1),
 random_between(1,T1,Pos2),
 nth1(Pos1,S1,E1),
 nth1(Pos2,S1,E2),
 removeElementPos(Pos1,S1,S2),
 insertElementPos(Pos1,E2,S2,S3),
 removeElementPos(Pos2,S3,S4),
 insertElementPos(Pos2,E1,S4,Sn).

?-newAdjacent([b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o],NA).
 NA = [b,r,c,d,h,l,g,p,n,e,i,m,f,j,q,o]

Hill climbing

Compute adjacent solutions:
• Now we can compute some adjacents (let’s do it 10

times)

17

[b,r,c,d,h,l,g,p,n,e,i,m,f,j,q,o]
[b,r,c,d,l,f,g,p,n,e,i,m,h,j,q,o]
[b,r,c,d,f,l,g,p,n,e,i,h,m,j,q,o]
[b,r,c,d,f,q,g,p,n,e,i,m,h,j,l,o]
[b,r,l,d,f,c,g,p,n,e,i,m,h,j,q,o]
[b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o]
[b,r,c,d,f,l,g,h,n,e,i,m,p,j,q,o]
[b,r,c,g,f,l,d,p,n,e,i,m,h,j,q,o]
[b,h,c,d,f,l,g,p,n,e,i,m,r,j,q,o]
[b,r,c,d,n,l,g,p,f,e,i,m,h,j,q,o]

Hill climbing

Compute adjacent solutions:
• And add the origin/destination

18

[a,b,r,c,d,h,l,g,p,n,e,i,m,f,j,q,o,a]
[a,b,r,c,d,l,f,g,p,n,e,i,m,h,j,q,o,a]
[a,b,r,c,d,f,l,g,p,n,e,i,h,m,j,q,o,a]
[a,b,r,c,d,f,q,g,p,n,e,i,m,h,j,l,o,a]
[a,b,r,l,d,f,c,g,p,n,e,i,m,h,j,q,o,a]
[a,b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o,a]
[a,b,r,c,d,f,l,g,h,n,e,i,m,p,j,q,o,a]
[a,b,r,c,g,f,l,d,p,n,e,i,m,h,j,q,o,a]
[a,b,h,c,d,f,l,g,p,n,e,i,m,r,j,q,o,a]
[a,b,r,c,d,n,l,g,p,f,e,i,m,h,j,q,o,a]

Hill climbing

Compute adjacent solutions:
• Are they better than my original path (761)?

19

[(764,[a,b,r,c,d,h,l,g,p,n,e,i,m,f,j,q,o,a]),
 (803,[a,b,r,c,d,l,f,g,p,n,e,i,m,h,j,q,o,a]),
 (799,[a,b,r,c,d,f,l,g,p,n,e,i,h,m,j,q,o,a]),
 (810,[a,b,r,c,d,f,q,g,p,n,e,i,m,h,j,l,o,a]),
 (741,[a,b,r,l,d,f,c,g,p,n,e,i,m,h,j,q,o,a]),
 (761,[a,b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o,a]),
 (742,[a,b,r,c,d,f,l,g,h,n,e,i,m,p,j,q,o,a]),
 (834,[a,b,r,c,g,f,l,d,p,n,e,i,m,h,j,q,o,a]),
 (716,[a,b,h,c,d,f,l,g,p,n,e,i,m,r,j,q,o,a]),
 (777,[a,b,r,c,d,n,l,g,p,f,e,i,m,h,j,q,o,a])]

Hill climbing

If we have a better solution we move.

We define a total number of iterations to stop or we
stop when no neighbor is a better solution!
But not finding a better solution in the neighborhood
doesn’t mean it does not exist.

20

 (716,[a,b,h,c,d,f,l,g,p,n,e,i,m,r,j,q,o,a])

Simulated Annealing

Tries to overcome this problem by (sometimes) not
accepting to move to best neighbors.
The basic idea:
1. Generate an initial random solution.
2. Calculate its cost cold.
3. Generate a random neighbor
4. Calculate the new solution's cost cnew
5. Compare them:

1. If cnew < cold: move to the new solution
2. If cnew > cold: maybe move to the new solution

6. Repeat steps 3-5 above until an acceptable solution is
found or you reach some maximum number of iterations.

21

Simulated Annealing

1. Generate an initial random solution.
2. Calculate its cost cold.
3. Generate a random neighbor
4. Calculate the new solution's cost cnew
5. Compare them:

1. If cnew < cold: move to the new solution
2. If cnew > cold: maybe move to the new

solution
6. Repeat steps 3-5 above until an

acceptable solution is found or you
reach some maximum number of
iterations.

22

Similar to hill
climbing

Different from hill climbing
and requires further details

Simulated Annealing

If cnew > cold: maybe move to the new solution

Hill climbing can get caught at local maxima.
To avoid that problem, Simulated Annealing
sometimes chooses to keep the worse solution.
To decide, the algorithm calculates an acceptance
probability and then compares it to a random
number.

23

Simulated Annealing

The acceptance probability function takes cold,
cnew and a temperature T.

Temperature?
• Yes, Simulated Annealing is based on metalworking.
• Temperature is usually started at 1.0
• It decreases at the end of each iteration by

multiplying by a constant α (usually a value between
0,80 and 0,99)

• Experience shows that higher is better!

24

Simulated Annealing

Temperature?
• We also need to decide how many neighbour

generations and comparisons we make at each
temperature.

• One can use a fixed value (the higher the better –
between 100 and 1000)

• An alternative is to dynamically change the number of
iterations as the algorithm progresses.
■ At lower temperatures it is important that a large

number of iterations are done so that the local optimum
can be fully explored.

■ At higher temperatures, the number of iterations can be
less.

25

Simulated Annealing

Going back…
The acceptance probability function takes cold, cnew
and a temperature T.
The acceptance probability generates a number
between 0 and 1, which is a sort of recommendation on
whether or not to jump to the new solution. For example:
• 1.0: switch (the new solution is better)
• 0.0: do not switch (the new solution is infinitely worse)
Once the acceptance probability is calculated, it's
compared to a randomly-generated number between 0
and 1.
If the acceptance probability is larger than the random
number, switch to the new solution.

26

Simulated Annealing

The acceptance probability function takes cold, cnew
and a temperature T.
And how do we compute it?
Usually with the following formula:

(Stuart Russell and Peter Norvig. 2009. Artificial Intelligence: A Modern
Approach (3rd ed.). Prentice Hall Press, Upper Saddle River, NJ, USA.)

27

Simulated Annealing
28

Simulated Annealing

29

Simulated Annealing

30

