SIMULATED ANNEALING

Advanced Algorithms Course

Motivation

- Finding a good solution to an optimization problem.
- Good does not mean perfect.
- Trying to minimize the cost of travelling is a good example

- Our first approach will be the rather naïve Hill
 Climbing algorithm.
- The basic idea of Hill Climbing is:
 - Choose a starting point.
 - Try to improve solution
 - 3. If no further improvements are possible then stop.

- It is like the algorithm is climbing a hill and tries to find the top, where the best solution is.
- It can only take steps to take it uphill.
- This means it can stop before finding the best solution.

Image source: http://katrinaeg.com/simulated-annealing

- The biggest hill is the global maximum.
- The top of any other hill is a local maximum.

- We need to define the initial solution:
 - Randomly generate a sequence o cities.

```
city(a, 45, 95).
city(b,90,95).
city(c,15,85).
city(d,40,80).
city(e,70,80).
city(f, 25, 65).
city(g,65,65).
city(h, 45, 55).
city(i,5,50).
city(j,80,50).
city(1,65,45).
city(m, 25, 40).
city(n,55,30).
city(0,80,30).
city(p, 25, 15).
city(q,80,15).
city(r, 55, 10).
```


- We need to define the initial solution:
 - Randomly generate a sequence of cities.

initialSolution(Orig,L):findall(X,(city(X,_,_),X $\ensuremath{\mbox{$\sim$}}$),X\=Orig),L1), random_permutation(L1,L).

?-initialSolution(a,L)

- We need to define the initial solution:
 - Randomly generate a sequence of cities.

initialSolution(Orig,L):findall(X,(city(X,_,_),X $\ensuremath{\mbox{\mbox{-}}}$ Crig),L1), random_permutation(L1,L).

?-initialSolution(a,L)

L = [b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o]

- Now, we need to evaluate the solution:
 - Compute the total distance.

```
distance(C1,C2,Dist):-
city(C1,X1,Y1),
city(C2,X2,Y2),
DX is X1-X2,
DY is Y1-Y2,
Dist is sqrt(DX*DX+DY*DY).
```


- Now, we need to evaluate the solution:
 - Compute the total distance.

```
distance(C1,C2,Dist):-
city(C1,X1,Y1),
city(C2,X2,Y2),
DX is X1-X2,
DY is Y1-Y2,
Dist is sqrt(DX*DX+DY*DY).
```

?-distance(a,n,D). D = 65.76

- Now, we need to evaluate the solution:
 - Compute the total distance.

- Now, we need to evaluate the solution:
 - Compute the total distance.

?-totalDistance([a,b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o,a],D). D = 761

- Now, we need to evaluate the solution:
 - Compute the total distance.

?-totalDistance([a,b,r,c,d,f,l,g,p,n,e,i,m,h,i,c,D). D = 761Goal: Minimize this!

- Compute adjacent solutions:
 - Lets swap two random elements

```
newAdjacent(S1,Sn):-
length(S1,T1),
random_between(1,T1,Pos1),
random_between(1,T1,Pos2),
nth1(Pos1,S1,E1),
nth1(Pos2,S1,E2),
removeElementPos(Pos1,S1,S2),
insertElementPos(Pos1,E2,S2,S3),
removeElementPos(Pos2,S3,S4),
insertElementPos(Pos2,E1,S4,Sn).
```


- Compute adjacent solutions:
 - Lets swap two random elements

```
newAdjacent(S1,Sn):-
length(S1,T1),
random_between(1,T1,Pos1),
random_between(1,T1,Pos2),
nth1(Pos1,S1,E1),
nth1(Pos2,S1,E2),
removeElementPos(Pos1,S1,S2),
insertElementPos(Pos1,E2,S2,S3),
removeElementPos(Pos2,S3,S4),
insertElementPos(Pos2,E1,S4,Sn).
```

?-newAdjacent([b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o],NA). NA = [b,r,c,d,h,l,g,p,n,e,i,m,f,j,q,o]

- Compute adjacent solutions:
 - Lets swap two random elements

```
newAdjacent(S1,Sn):-
length(S1,T1),
random_between(1,T1,Pos1),
random_between(1,T1,Pos2),
nth1(Pos1,S1,E1),
nth1(Pos2,S1,E2),
removeElementPos(Pos1,S1,S2),
insertElementPos(Pos1,E2,S2,S3),
removeElementPos(Pos2,S3,S4),
insertElementPos(Pos2,E1,S4,Sn).
```

?-newAdjacent([b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o],NA). NA = [b,r,c,d,h,l,g,p,n,e,i,m,f,j,q,o]

Compute adjacent solutions:

Now we can compute some adjacents (let's do it 10

times)

[b,r,c,d,h,l,g,p,n,e,i,m,f,j,q,o] [b,r,c,d,l,f,g,p,n,e,i,m,h,j,q,o] [b,r,c,d,f,l,g,p,n,e,i,h,m,j,q,o] [b,r,c,d,f,q,g,p,n,e,i,m,h,j,l,o] [b,r,l,d,f,c,g,p,n,e,i,m,h,j,q,o] [b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o] [b,r,c,d,f,l,g,h,n,e,i,m,h,j,q,o] [b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o] [b,h,c,d,f,l,g,p,n,e,i,m,h,j,q,o]

- Compute adjacent solutions:
 - And add the origin/destination

[a,b,r,c,d,h,l,g,p,n,e,i,m,f,j,q,o,a] [a,b,r,c,d,l,f,g,p,n,e,i,m,h,j,q,o,a] [a,b,r,c,d,f,l,g,p,n,e,i,h,m,j,q,o,a] [a,b,r,c,d,f,q,g,p,n,e,i,m,h,j,q,o,a] [a,b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o,a] [a,b,r,c,d,f,l,g,h,n,e,i,m,p,j,q,o,a] [a,b,r,c,g,f,l,d,p,n,e,i,m,h,j,q,o,a] [a,b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o,a] [a,b,r,c,d,f,l,g,p,n,e,i,m,r,j,q,o,a]

- Compute adjacent solutions:
 - Are they better than my original path (761)?

```
[ (764,[a,b,r,c,d,h,l,g,p,n,e,i,m,f,j,q,o,a]), (803,[a,b,r,c,d,l,f,g,p,n,e,i,m,h,j,q,o,a]), (799,[a,b,r,c,d,f,l,g,p,n,e,i,h,m,j,q,o,a]), (810,[a,b,r,c,d,f,q,g,p,n,e,i,m,h,j,l,o,a]), (741,[a,b,r,l,d,f,c,g,p,n,e,i,m,h,j,q,o,a]), (761,[a,b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o,a]), (742,[a,b,r,c,d,f,l,g,h,n,e,i,m,p,j,q,o,a]), (834,[a,b,r,c,g,f,l,d,p,n,e,i,m,h,j,q,o,a]), (777,[a,b,r,c,d,n,l,g,p,f,e,i,m,h,j,q,o,a])]
```


If we have a better solution we move.

- We define a total number of iterations to stop or we stop when no neighbor is a better solution!
- But not finding a better solution in the neighborhood doesn't mean it does not exist.

- Tries to overcome this problem by (sometimes) not accepting to move to best neighbors.
- The basic idea:
 - 1. Generate an initial random solution.
 - 2. Calculate its cost cold.
 - 3. Generate a random neighbor
 - 4. Calculate the new solution's cost c_{new}
 - 5. Compare them:
 - 1. If $c_{new} < c_{old}$: move to the new solution
 - 2. If $c_{new} > c_{old}$: maybe move to the new solution
 - 6. Repeat steps 3-5 above until an acceptable solution is found or you reach some maximum number of iterations.

- Generate an initial random solution.
- 2. Calculate its cost cold.
- 3. Generate a random neighbor
- 4. Calculate the new solution's cost c_{new}
- 5. Compare them:
 - 1. If $c_{new} < c_{old}$: move to the new solution
 - If $c_{new} > c_{old}$: maybe move to the new solution
- 6. Repeat steps 3-5 above until an acceptable solution is found or you reach some maximum number of iterations.

Similar to hill climbing

Different from hill climbing and requires further details

If $c_{new} > c_{old}$: maybe move to the new solution

- Hill climbing can get caught at local maxima.
- To avoid that problem, Simulated Annealing sometimes chooses to keep the worse solution.
- To decide, the algorithm calculates an acceptance probability and then compares it to a random number.

- The acceptance probability function takes c_{old},
 c_{new} and a temperature T.
- Temperature?
 - Yes, Simulated Annealing is based on metalworking.
 - Temperature is usually started at 1.0
 - It decreases at the end of each iteration by multiplying by a constant α (usually a value between 0,80 and 0,99)
 - Experience shows that higher is better!

Temperature?

- We also need to decide how many neighbour generations and comparisons we make <u>at each</u> <u>temperature</u>.
- One can use a fixed value (the higher the better between 100 and 1000)
- An alternative is to dynamically change the number of iterations as the algorithm progresses.
 - At lower temperatures it is important that a large number of iterations are done so that the local optimum can be fully explored.
 - At higher temperatures, the number of iterations can be less.

- Going back...
- The acceptance probability function takes c_{old} , c_{new} and a temperature T.
- The acceptance probability generates a number between 0 and 1, which is a sort of recommendation on whether or not to jump to the new solution. For example:
 - 1.0: switch (the new solution is better)
 - 0.0: do not switch (the new solution is infinitely worse)
- Once the acceptance probability is calculated, it's compared to a randomly-generated number between 0 and 1.
- If the acceptance probability is larger than the random number, switch to the new solution.

- The acceptance probability function takes c_{old}, c_{new} and a temperature T.
- And how do we compute it?
- Usually with the following formula:

$$Ap = e^{\frac{c_{old} - c_{new}}{T}}$$

(Stuart Russell and Peter Norvig. 2009. Artificial Intelligence: A Modern Approach (3rd ed.). Prentice Hall Press, Upper Saddle River, NJ, USA.)

$$Ap = e^{\frac{c_{old} - c_{new}}{T}}$$

- □ The probability decreases exponentially with the "badness" of the move. $(c_{old} c_{new})$.
- The probability also decreases as the "temperature" T goes down:
 - "bad" moves are more likely to be allowed at the start when T is high, and they become more unlikely as T decreases.
- If the algorithm lowers T slowly enough, it will find a global optimum with probability approaching 1.

$$Ap = e^{\frac{c_{old} - c_{new}}{T}}$$

Examples:

- ho T = 1, c_{old} = 99 and c_{new} = 100, Ap \approx 0,38 (38%)
- \blacksquare T = 0.9, c_{old} = 100 and c_{new} = 98, Ap \approx 9 (more than 1, we consider 100%)
- \blacksquare T = 0.9, c_{old} = 98 and c_{new} = 100, Ap \approx 0,11 (11%)

(Recall
$$e = 2,71828$$
)

The complete idea:

Generate an initial random solution s.

Calculate its cost cold.

While T > 0 and not reached a maximum number of iterations

While the total number of iterations per temperature is not exceeded

```
Generate a random neighbour s'

Calculate the new solution's cost c_{new}

If c_{new} < c_{old}

s = s'

else

Ap = e^{\frac{c_{old} - c_{new}}{T}}

if Ap > random(0,1)

s = s'

c_{old} = c_{new}
```