
SIMULATED ANNEALING
Advanced Algorithms Course
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Motivation

Finding a good solution to an optimization problem. 
Good does not mean perfect. 
Trying to minimize the cost of travelling is a good 
example
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Hill climbing

Our first approach will be the rather naïve Hill 
Climbing algorithm. 
The basic idea of Hill Climbing is: 
1. Choose a starting point. 
2. Try to improve solution 
3. If no further improvements are possible then stop.
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Hill climbing

It is like the algorithm is climbing a hill and tries to 
find the top, where the best solution is. 
It can only take steps to take it uphill. 
This means it can stop before finding the best 
solution.
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Image source: http://katrinaeg.com/simulated-annealing.html



Hill climbing

The biggest hill is the global maximum. 
The top of any other hill is a local maximum.
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Hill climbing

We need to define the initial solution: 
• Randomly generate a sequence o cities. 
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city(a,45,95). 
city(b,90,95). 
city(c,15,85). 
city(d,40,80). 
city(e,70,80). 
city(f,25,65). 
city(g,65,65). 
city(h,45,55). 
city(i,5,50). 
city(j,80,50). 
city(l,65,45). 
city(m,25,40). 
city(n,55,30). 
city(o,80,30). 
city(p,25,15). 
city(q,80,15). 
city(r,55,10).



Hill climbing

We need to define the initial solution: 
• Randomly generate a sequence of cities. 
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initialSolution(Orig,L):- 
 findall(X,(city(X,_,_),X\=Orig),L1), 
 random_permutation(L1,L).

?-initialSolution(a,L)



Hill climbing

We need to define the initial solution: 
• Randomly generate a sequence of cities. 
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initialSolution(Orig,L):- 
 findall(X,(city(X,_,_),X\=Orig),L1), 
 random_permutation(L1,L).

?-initialSolution(a,L)

L = [b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o]



Hill climbing

Now, we need to evaluate the solution: 
• Compute the total distance. 
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distance(C1,C2,Dist):- 
 city(C1,X1,Y1), 
 city(C2,X2,Y2), 
 DX is X1-X2, 
 DY is Y1-Y2, 
 Dist is sqrt(DX*DX+DY*DY).



Hill climbing

Now, we need to evaluate the solution: 
• Compute the total distance. 
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distance(C1,C2,Dist):- 
 city(C1,X1,Y1), 
 city(C2,X2,Y2), 
 DX is X1-X2, 
 DY is Y1-Y2, 
 Dist is sqrt(DX*DX+DY*DY).

?-distance(a,n,D). 
D = 65.76 



Hill climbing

Now, we need to evaluate the solution: 
• Compute the total distance. 

11

totalDistance([],0). 
totalDistance([_],0). 
totalDistance([X,Y|L],T):- 
 distance(X,Y,Cl), 
 totalDistance([Y|L],T1), 
 T is T1 + Cl.



Hill climbing

Now, we need to evaluate the solution: 
• Compute the total distance. 
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totalDistance([],0). 
totalDistance([_],0). 
totalDistance([X,Y|L],T):- 
 distance(X,Y,Cl), 
 totalDistance([Y|L],T1), 
 T is T1 + Cl.

?-totalDistance([a,b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o,a],D). 
D = 761



Hill climbing

Now, we need to evaluate the solution: 
• Compute the total distance. 

13

totalDistance([],0). 
totalDistance([_],0). 
totalDistance([X,Y|L],T):- 
 distance(X,Y,Cl), 
 totalDistance([Y|L],T1), 
 T is T1 + Cl.

?-totalDistance([a,b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o,a],D). 
D = 761

Goal: M
inim

ize this
!



Hill climbing

Compute adjacent solutions: 
• Lets swap two random elements 
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newAdjacent(S1,Sn):- 
 length(S1,T1), 
 random_between(1,T1,Pos1), 
 random_between(1,T1,Pos2), 
 nth1(Pos1,S1,E1), 
 nth1(Pos2,S1,E2), 
 removeElementPos(Pos1,S1,S2), 
 insertElementPos(Pos1,E2,S2,S3), 
 removeElementPos(Pos2,S3,S4), 
 insertElementPos(Pos2,E1,S4,Sn).



Hill climbing

Compute adjacent solutions: 
• Lets swap two random elements 
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newAdjacent(S1,Sn):- 
 length(S1,T1), 
 random_between(1,T1,Pos1), 
 random_between(1,T1,Pos2), 
 nth1(Pos1,S1,E1), 
 nth1(Pos2,S1,E2), 
 removeElementPos(Pos1,S1,S2), 
 insertElementPos(Pos1,E2,S2,S3), 
 removeElementPos(Pos2,S3,S4), 
 insertElementPos(Pos2,E1,S4,Sn).

?-newAdjacent([b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o],NA). 
NA = [b,r,c,d,h,l,g,p,n,e,i,m,f,j,q,o]



Hill climbing

Compute adjacent solutions: 
• Lets swap two random elements 
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newAdjacent(S1,Sn):- 
 length(S1,T1), 
 random_between(1,T1,Pos1), 
 random_between(1,T1,Pos2), 
 nth1(Pos1,S1,E1), 
 nth1(Pos2,S1,E2), 
 removeElementPos(Pos1,S1,S2), 
 insertElementPos(Pos1,E2,S2,S3), 
 removeElementPos(Pos2,S3,S4), 
 insertElementPos(Pos2,E1,S4,Sn).

?-newAdjacent([b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o],NA). 
        NA = [b,r,c,d,h,l,g,p,n,e,i,m,f,j,q,o]



Hill climbing

Compute adjacent solutions: 
• Now we can compute some adjacents (let’s do it 10 

times)

17

[b,r,c,d,h,l,g,p,n,e,i,m,f,j,q,o] 
[b,r,c,d,l,f,g,p,n,e,i,m,h,j,q,o] 
[b,r,c,d,f,l,g,p,n,e,i,h,m,j,q,o] 
[b,r,c,d,f,q,g,p,n,e,i,m,h,j,l,o] 
[b,r,l,d,f,c,g,p,n,e,i,m,h,j,q,o] 
[b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o] 
[b,r,c,d,f,l,g,h,n,e,i,m,p,j,q,o] 
[b,r,c,g,f,l,d,p,n,e,i,m,h,j,q,o] 
[b,h,c,d,f,l,g,p,n,e,i,m,r,j,q,o] 
[b,r,c,d,n,l,g,p,f,e,i,m,h,j,q,o]



Hill climbing

Compute adjacent solutions: 
• And add the origin/destination
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[a,b,r,c,d,h,l,g,p,n,e,i,m,f,j,q,o,a] 
[a,b,r,c,d,l,f,g,p,n,e,i,m,h,j,q,o,a] 
[a,b,r,c,d,f,l,g,p,n,e,i,h,m,j,q,o,a] 
[a,b,r,c,d,f,q,g,p,n,e,i,m,h,j,l,o,a] 
[a,b,r,l,d,f,c,g,p,n,e,i,m,h,j,q,o,a] 
[a,b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o,a] 
[a,b,r,c,d,f,l,g,h,n,e,i,m,p,j,q,o,a] 
[a,b,r,c,g,f,l,d,p,n,e,i,m,h,j,q,o,a] 
[a,b,h,c,d,f,l,g,p,n,e,i,m,r,j,q,o,a] 
[a,b,r,c,d,n,l,g,p,f,e,i,m,h,j,q,o,a]



Hill climbing

Compute adjacent solutions: 
• Are they better than my original path (761)?
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[ (764,[a,b,r,c,d,h,l,g,p,n,e,i,m,f,j,q,o,a]),  
  (803,[a,b,r,c,d,l,f,g,p,n,e,i,m,h,j,q,o,a]),  
  (799,[a,b,r,c,d,f,l,g,p,n,e,i,h,m,j,q,o,a]),  
  (810,[a,b,r,c,d,f,q,g,p,n,e,i,m,h,j,l,o,a]),  
  (741,[a,b,r,l,d,f,c,g,p,n,e,i,m,h,j,q,o,a]),  
  (761,[a,b,r,c,d,f,l,g,p,n,e,i,m,h,j,q,o,a]),  
  (742,[a,b,r,c,d,f,l,g,h,n,e,i,m,p,j,q,o,a]),  
  (834,[a,b,r,c,g,f,l,d,p,n,e,i,m,h,j,q,o,a]),  
  (716,[a,b,h,c,d,f,l,g,p,n,e,i,m,r,j,q,o,a]),  
  (777,[a,b,r,c,d,n,l,g,p,f,e,i,m,h,j,q,o,a])]



Hill climbing

If we have a better solution we move. 

We define a total number of iterations to stop or we 
stop when no neighbor is a better solution! 
But not finding a better solution in the neighborhood 
doesn’t mean it does not exist.
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  (716,[a,b,h,c,d,f,l,g,p,n,e,i,m,r,j,q,o,a])



Simulated Annealing

Tries to overcome this problem by (sometimes) not 
accepting to move to best neighbors. 
The basic idea: 
1. Generate an initial random solution. 
2. Calculate its cost cold. 
3. Generate a random neighbor 
4. Calculate the new solution's cost cnew 
5. Compare them: 

1. If cnew < cold: move to the new solution 
2. If cnew > cold: maybe move to the new solution 

6. Repeat steps 3-5 above until an acceptable solution is 
found or you reach some maximum number of iterations.
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Simulated Annealing

1. Generate an initial random solution. 
2. Calculate its cost cold. 
3. Generate a random neighbor 
4. Calculate the new solution's cost cnew 
5. Compare them: 

1. If cnew < cold: move to the new solution 
2. If cnew > cold: maybe move to the new 

solution 
6. Repeat steps 3-5 above until an 

acceptable solution is found or you 
reach some maximum number of 
iterations.
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Similar to hill 
climbing

Different from hill climbing 
and requires further details



Simulated Annealing

If cnew > cold: maybe move to the new solution 

Hill climbing can get caught at local maxima.  
To avoid that problem, Simulated Annealing 
sometimes chooses to keep the worse solution.  
To decide, the algorithm calculates an acceptance 
probability and then compares it to a random 
number.
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Simulated Annealing

The acceptance probability function takes cold, 
cnew and a temperature T. 

Temperature? 
• Yes, Simulated Annealing is based on metalworking. 
• Temperature is usually started at 1.0 
• It decreases at the end of each iteration by 

multiplying by a constant α (usually a value between 
0,80 and 0,99) 

• Experience shows that higher is better!
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Simulated Annealing

Temperature? 
• We also need to decide how many neighbour 

generations and comparisons we make at each 
temperature. 

• One can use a fixed value (the higher the better – 
between 100 and 1000) 

• An alternative is to dynamically change the number of 
iterations as the algorithm progresses.  
■ At lower temperatures it is important that a large 

number of iterations are done so that the local optimum 
can be fully explored.  

■ At higher temperatures, the number of iterations can be 
less.
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Simulated Annealing

Going back… 
The acceptance probability function takes cold, cnew 
and a temperature T. 
The acceptance probability generates a number 
between 0 and 1, which is a sort of recommendation on 
whether or not to jump to the new solution. For example: 
• 1.0: switch (the new solution is better) 
• 0.0: do not switch (the new solution is infinitely worse) 
Once the acceptance probability is calculated, it's 
compared to a randomly-generated number between 0 
and 1.  
If the acceptance probability is larger than the random 
number, switch to the new solution.
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Simulated Annealing

The acceptance probability function takes cold, cnew 
and a temperature T. 
And how do we compute it? 
Usually with the following formula: 

(Stuart Russell and Peter Norvig. 2009. Artificial Intelligence: A Modern 
Approach (3rd ed.). Prentice Hall Press, Upper Saddle River, NJ, USA.)
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Simulated Annealing
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Simulated Annealing
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Simulated Annealing
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