
Knowledge	Base

Prolog

1

Prolog	Knowledge	Base
• Knowledge	base	=	database	
– set	of	facts/rules	in	the	program	

• Can	add/subtract	facts	and	rules	at	run	time	

• Adding	facts/rules	
– assert,	asserta,	assertz	

• Subtracting	facts/rules	
– retract,	retractall

2

Asserting	a	Fact
• Just	tell	prolog	that	it’s	so	

?- raining.
ERROR: Undefined procedure: raining/0

?- assert(raining).
true.

?- raining.
true.

• Prolog	didn’t	know	about	raining/0

3

Assertion	Order
• assert/1	puts	the	fact/rule	in	the	database	
– doesn’t	specify	where	the	entry	is	added	in	the	database	
– (SWI-Prolog	puts	it	at	the	end)	

• The	order	of	clauses	for	a	predicate	is	very		important	as	
Prolog	attempts	to	match	clause	heads	in	the	order	they	
were	consulted	
– asserta/1	puts	fact/rule	in	front	

– assertz/1	puts	fact/rule	at	end

4

Assertion	Order
?- assert(num(1)).
?- assertz(num(2)).
?- asserta(num(0)).
?- assertz(num(3)).
?- num(X).
X = 0 ;
X = 1 ;
X = 2 ;
X = 3

Adds	num(1)	to	KB	
Adds	num(2)	to	end	of	KB	
Adds	num(0)	to	front	of	KB	
Adds	num(3)	to	end	of	KB

5

Assertion	Order:	Exercise
?- asserta(what(1)).
?- assertz(what(2)).
?- asserta(what(3)).
?- assertz(what(4)).
?- asserta(what(5)).

?- what(X).
X = ? ;
X = ? ;
X = ? ;
...

6

Asserting	Rules
• Rules	can	also	be	asserted:	
– Rules	are	enclosed	in	brackets	and	without	the	final	full-stop	

?- assert((mother(X,Y):-son(Y,X),female(X))).

7

?- assert(son(tom,sue)).
true.
?- assert(female(sue)).
true.
?- assert((mother(X,Y):-son(Y,X),female(X))).
true.

?- mother(sue,tom).
true.

• To	see	the	the	rule/fact	in	knowledge	base:	

?- listing(mother/2).

Example	database	manipulation

8

Monotonic	vs.	Nonmonotonic	logic

• Standard	logic	is	monotonic:	once	something	is	true,	it	is	
true	forever	

• Logic	isn’t	good	to	fit	reality:	reality	may	change!	

• Prolog	uses	nonmonotonic	logic	
• Facts	and	rules	can	be	changed	at	any	time	
- such	facts	and	rules	are	said	to	be	dynamic

9

Marking	clauses	as	“Dynamic”
• Standard	Prolog	allow	to	assert	and	retract	clauses	
without	any	restrictions	

• SWI-Prolog	and	some	others	require	to	mark	variable	
clauses	as	“dynamic”	to	be	manipulated	during	runtime	

:- dynamic raining/0.

• The	“:-”	at	the	beginning	is	mandatory

10

Exercise

• Write	a	predicate	that	asks	the	user	for	a	person’s	
parents	&	asserts	those	facts	
?- add_parents(mark).
Who is mark’s father? bob.
Who is mark’s mother? mary.
Yes
?- father(mark, Dad), mother(mark, Mom).
Dad = bob, Mom = mary

11

Solution

askParents(Person):-askforWho(Person,father,Dad),
 askforWho(Person,mother,Mom),
 assert(father(Person,Dad)),
 assert(mother(Person,Mom)).

askforWho(Person,Role,Name):- write(‘Who is ’),
 write(Person),
 write(‘\’s ’),
 write(Role),
 write(‘? ’),
 read(Name).

12

Retraction

• Tell	Prolog	to	remove	a	fact/rule	

?- raining.
Yes
?- retract(raining).
Yes
?- raining.
No

13

Retraction	Order
• From	first	to	last	

?- retract(num(0)), retract(num(1)).
true;
true.

• retract	fails	if	no	clause	matches

14

Retracting	All	Clauses
• rectractall/1	retracts	multiple	clauses	
– all	clauses	with	head	matching	the	argument	

?- num(N).
N = 2;
N = 3
?- retractall(num(N)).
Yes
?- num(N).
false.

15

Retracting	Rules

• As	for	asserting	rules	
– use	parentheses	if	body	is	compound	
– body	may	be	a	variable/partly	instantiated	

?- retract((mother(X,Y):-son(Y,X),female(X))).
true.
?- mother(sue,tom).
false.

16

Asserting	and	Retracting
• Used	for	AI	programs	that	learn	
– create	a	new	rule	&	add	it	to	the	database	
– forget	an	old	rule	

• Can	also	be	used	for	efficiency	
– asserta	solutions	previously	found	
– found	before	general	code	called

17

Naïve	Fibonacci

fib(1, 1).
fib(2, 1).
fib(N, F):- N > 2,
 N1 is N – 1, fib(N1, F1),
 N2 is N – 2, fib(N2, F2),
 F is F1 + F2.

18

Trace	fib(5,F)
fib(5, F0)
 fib(4, F1)
 fib(3, F2)
 fib(2, F3) à F3 = 1
 fib(1, F4) à F4 = 1
 fib(2, F5) à F5 = 1
 fib(3, F2)
 fib(2, F3) à F3 = 1
 fib(1, F4) à F4 = 1

fib(3,	F)	gets	calculated	again	
	 extra	work	done	
	 much	worse	as	#s	get	bigger

19

Assertional	Fibonacci
fibon(1, 1).
fibon(2, 1).
fibon(N, F) :-
 N > 2,
 N1 is N – 1, fibon(N1, F1),
 N2 is N – 2, fibon(N2, F2),
 F is F1 + F2,
 asserta(fibon(N, F)). % remember the result
 % at the beginning

20

Trace	fibon(5,F)
fibon(5, F0)
 fibon(4, F1)
 fibon(3, F2)
 fibon(2, F3) à F3 = 1
 fibon(1, F4) à F4 = 1
 asserta(fibon(3,2))
 fibon(2, F5) à F5 = 1
 asserta(fibon(4,3))
 fibon(3,F6) à F6 = 2
 asserta(fib2(5,5))

à Saves	work	
from	calculating	
fib(3)

à Matches	asserted	fact	–	no	
need	to	recalculate

21

Collecting	all	solutions	

22

Collecting	all	solutions
• Generate	all	of	the	solutions	to	a	given	goal	

 ?- member(X, [1,2,3,4]).
 X = 1 ;
 X = 2 ;
 X = 3 ;
 X = 4 ;
 no

• It	is	useful	to	have	all	the	generated	objects	available	
together—for	example	collected	into	a	list	
• The	built-in	predicates	bagof,	setof,	and	findall	serve	this	
purpose

23

Meta-predicates
• findall/3,	setof/3,	and	bagof/3	are	all		meta-predicates	

findall(X,P,L)		
setof(X,P,L)	 									All	produce	a	list	L	of	all	the	objects	X	such	
bagof(X,P,L)					that	goal	P	is	satisfied	

• They	all	repeatedly	call	the	goal	P,	instantiating	the	
variable	X	within	P	and	adding	it	to	the	list	L	

• They	succeed	when	there	are	no	more	solutions

24

findall/3
• findall/3	is	the	most	straightforward	of	the	three,	and	the	
most	commonly	used:	

	 ?- findall(X, member(X, [1,2,3,4]), Results).
 Results = [1,2,3,4]
 yes

• Solutions	are	listed	in	the	result	in	the	same	order	in	
which	Prolog	finds	them	

• If	there	are	duplicated	solutions,	all	are	included.	If	there	
are	infinitely-many	solutions,	it	will	never	terminate!

25

findall/3	
• The	findall/3	can	be	used	in	more	sophisticated	ways	
• The	second	argument,	which	is	the	goal,	might	be	a	
compound	goal:	

?- findall(X,(member(X,[1,2,3,4]),X > 2), R).
R = [3,4]?
Yes

• The	first	argument	can	be	a	term	of	any	complexity:	

?- findall(X/Y,(member(X,[1,2,3,4]),Y is X*X),R).
R = [1/1, 2/4, 3/9, 4/16]?
yes

26

setof/3
• setof/3	works	very	much	like	findall/3,	except	that:	
– It	produces	the	set	of	all	results,	with	any	duplicates	and	the	
results	sorted	

– If	any	variables	are	used	in	the	goal,	which	do	not	appear	in	
the	first	argument,	setof/3	will	return	a	separate	result	for	
each	possible	instantiation	of	that	variable:	

				

age(peter,7).
age(ann,5).
age(pat,8).
age(tom,5).
age(ann,5).

Knowledge	base

27

?-setof(Child,age(Child,Age),R).
Age = 5,
R = [ann,tom];
Age = 7,
R = [peter];
Age = 8,
R = [pat];
no

setof/3
• A	nested	call	to	setof/3	collects	together	the	individual	
results:	

?- setof(Age/Children,setof(Child,age(Child,Age),
 Children), AllRes).
 AllRes = [5/[ann,tom],7/[peter],8/[pat]].

• If	the	variable	that	appear	in	the	first	argument	is	not	
important:	

?- setof(Child, Age^age(Child,Age), R).
R = [ann,pat,peter,tom].

– This	reads:	'Find	the	set	of	all	children,	such	that	the	Child	has	an	
Age	(whatever	it	might	be),	and	put	the	results	in	R'

28

bagof/3

• bagof/3	is	very	much	like	setof/3	except:		
– that	the	list	of	results	might	contain	duplicates		
– and	isn’t	sorted	

	 		?- bagof(Child, age(Child,Age),Results).
 Age = 5, Results = [tom,ann,ann]

 Age = 7, Results = [peter]
 Age = 8, Results = [pat].
	 	 	

• bagof/3	is	different	to	findall/3	as	it	will	generate	separate	
results	for	all	the	variables	in	the	goal	that	do	not	appear	in	
the	first	argument	

	 ?- findall(Child, age(Child,Age),Results).
Results = [peter,pat,tom,ann,ann].

29

