
SISTEMAS BASEADOS EM AGENTES

AGENT-BASED SYSTEMS

Carlos Ramos
António Silva
DEI-ISEP
2006-2012

1. Introduction
The concept of Agents has come into widespread use lately, hinting to its importance as a
programming paradigm, just as in the past Structured Programming and Object-oriented
Programming were.

That’s why this new technology was first introduced in the AISC (Intelligent Agents and
Cooperative Systems) module of the former Computers and Systems branch of Informatics
Engineering BsC, followed by this Agent-based Systems module of the Informatics
Engineering MsC.

This field’s knowledge is spread over a large number of books, magazines and websites. This
document’s purpose is to try and concentrate in a sole text the most important topics to be
taught in this module. Obviously, no document of this type can be complete and, therefore,
other complementary texts must be consulted.

Throughout this document we pretend to clarify concepts like Agent or Multi-Agent System,
trying to address the conditions under which this new technology should be used.

1.1. Agents’ Origin
In the beginning of the 80’s the Artificial Intelligence scientific community organized a series
of meetings, where it was proposed another sub-area of research: the Distributed Artificial
Intelligence. This new field resulted from the merging of two distinct areas: the Artificial
Intelligence and the Distributed Computing. So far the Artificial Intelligence scientific
community concentrated the systems’ intelligent capabilities is a single entity, the Intelligent
System.

According to Davis, the Distributed Artificial Intelligence’s goal is the solving of problems
where a single problem solver, a single machine or a single computational entity don’t seem
appropriate [Davis-1980].

Nilsson described Distributed Artificial Intelligence as being related to the type of problem
solving in which computation or inference were logically or physically distributed
[Nilsson-1981].

Distributed Artificial Intelligence covers two areas: Distributed Problem Solving and Multi-
Agent Systems.

Distributed Problem Solving is based on the assumption that the problem solving task can be
sub-divided in a certain number of modules or nodes, cooperating mutually, sharing
knowledge about the problem and the solution being produced.

In the Multi-Agent Systems the focus is on the coordination of the intelligent behaviors
shown by a community of agents (autonomous or semi-autonomous) in such a way that they
will be able to share knowledge, abilities, goals and plans in order to take actions or solve
problems. Individual agents should be able to reason about the coordination processes
involved.

Agent-based Systems

3

The use of the word “Agent” reaches its peak after the 90’s, with the Internet boom. A new
class of applications using the agent’s concept made its appearance, promoting agents as an
adequate technology for deploying systems on this distributed environment.

1.2. The different “visions” on Agents
The term “agent” is adopted by several different communities, apart from Artificial
Intelligence. Sometimes, the word is used in a overstretched manner, as a sort of marketing
gimmick to sell a perfectly conventional program as being agent-based. There are cases where
one is at pain to see those systems as more than a normal program with the ability of
migrating between computational resources.

Sometimes the Object-oriented Programming scientific community defends the point of view
that agents are not more than Distributed Objects, hinting that technologies like CORBA,
DCOM or RMI are enough.

Lets’ consider what is said on the subject by Jennings and Wooldridge:

An object encapsulates some state, and has some control over this state in that it can only be
accessed or modified via the methods that the object provides. Agents encapsulate state in just
the same way. However, we also think of agents as encapsulating behavior, in addition to
state. An object does not encapsulate behavior: it has no control over the execution of
methods – if an object x invokes a method m on an object y, then y has no control over
whether m is executed or not – it just is. In this sense, object y is not autonomous, as it has no
control over its own actions. In contrast, we think of an agent as having exactly this kind of
control over what actions it performs. Because of this distinction, we do not think of agents as
invoking methods (actions) on agents – rather, we tend to think of them requesting actions to
be performed. The decision about whether to act upon the request lies with the recipient.

The agents’ characteristics to be most praised depend on the particular community under
consideration. For instance, the Distributed Systems community considers Mobility as a vital
characteristic, while in Robotics the reactive behavior and the interaction with the physical
world are considered essential, and the Artificial Intelligence field stresses characteristics like
reasoning, learning and social skills.

Some authors and Agent technology proponents defend that the concept of Agents-oriented
Programming or Agent-based Programming will be the programming paradigm of the XXI
century and will be as important as the Structured Programming and the Object-oriented
Programming were in the past.

1.3. Agent definitions
A search in the dictionary will provide at least one of the following meanings:

1. a person or thing that takes an active role or produces a specified effect;
2. a person or entity who acts on behalf of another;
3. a means or instrument used by an intelligent entity to obtain a result.

Agent-based Systems

4

The definitions 2 and 3 seem to be interesting, suggesting capabilities of representation
(meaning 2) and intelligence (meaning 3).

From the Computer Science point of view Agents can also be defined in several ways:

(MuBot Agent) – The term agent is used to represent two orthogonal concepts. The first is the
agent's ability for autonomous execution. The second is the agent's ability to perform domain
oriented reasoning.

(AI, a modern approach) - An agent is anything that can be viewed as perceiving its
environment through sensors and acting upon that environment through effectors
[Russell-1995].

(Maes) - Autonomous agents are computational systems that inhabit some complex dynamic
environment, sense and act autonomously in this environment, and by doing so realize a set of
goals or tasks for which they are designed [Maes-1995].

(KidSim Agent) - An agent is a persistent software entity, dedicated to a specific purpose.
'Persistent' distinguishes agents from subroutines; agents have their own ideas about how to
accomplish tasks, their own agendas. 'Special purpose' distinguishes them from entire
multifunction applications [Smith-1994].

(Hayes-Roth) – Intelligent agents continuously perform three functions: perception of
dynamic conditions in the environment; action to affect conditions in the environment; and
reasoning to interpret perceptions, solve problems, draw inferences, and determine actions
[Hayes-Roth 1995].

(IBM Agent) – Intelligent agents are software entities that carry out some set of operations on
behalf of a user or another program with some degree of independence or autonomy, and in
so doing, employ some knowledge or representation of the user's goals or desires.

(Wooldrige-Jennings) – a hardware or (more usually) software-based computer system that
enjoys the following properties [Wooldridge-1995]:

 • autonomy: agents operate without the direct intervention of humans or others, and
have some kind of control over their actions and internal state;

 • social ability: agents interact with other agents (and possibly humans) via some kind
of agent-communication language;

 • reactivity: agents perceive their environment, (which may be the physical world, a
user via a graphical user interface, a collection of other agents, the INTERNET, or
perhaps all of these combined), and respond in a timely fashion to changes that occur
in it;

 • pro-activeness: agents do not simply act in response to their environment, they are
able to exhibit goal-directed behaviour by taking the initiative.

(SodaBot Agent) – Software agents are programs that engage in dialogs [and] negotiate and
co-ordinate transfer of information.

(Brustolini) – Autonomous agents are systems capable of autonomous, purposeful action in
the real world [Brustolini-1991].

Agent-based Systems

5

(Franklin & Gasser) – An autonomous agent is a system situated within and a part of an
environment that senses that environment and acts on it, over time, in pursuit of its own
agenda [Franklin-1996].

(Coelho) – In order to survive, the agents are forced to have decision making capabilities,
strategic and previsional, to be able to co-ordinate their actions and to face complex tasks in
an effective way [Coelho-1994].

(Minsky) – I will call Society of Mind to a scheme in which each mind is composed of very
little processes, called Agents. Each mental agent by itself can only do some simple thing that
needs no mind or thought at all. Nevertheless, when we put these agents together into
societies and in special ways, this will lead to true intelligence [Minsky-1986].

(Newell) – The main attributes of an agent are: to behave in a flexible way according to its
environment; to exhibit adaptive behaviour; to operate in real-time; to operate in a rich and
complex environment; to perceive an immense quantity of dynamic details; to use vast
amounts of knowledge; to contain a motorised system with several degrees of freedom; to use
symbols and abstractions; to use natural language; to learn with the environment; to acquire
abilities trough development; to live autonomously within an artificial community; to pay
attention to what’s around it and to itself.

If we take these definitions into account, then became clear some of the characteristics that
can be associated to an agent, such as, for instance, the sensorial capability, the ability to act
and react upon the environment, the autonomy or the social skills that allow the interaction
with other agents.

Some definitions are more focused on the Agent as an individual entity, being closer to the
sense of an agent as an entity that represents something or someone (for instance, an agent to
perform searches or purchases in the Internet on our behalf). This approach is said to be
associated with the Intelligent Agent concept.

Other definitions are more geared to the agents’ social skills. In these cases, the focus is not
on the agent itself but on the agents’ community, and hence the most valued characteristics are
the argumentation, negotiation and conflict resolution capabilities. One can say that this
approach is centred in Multi-Agent System concept.

Agent-based Systems

6

2. Agents’ classification

Agents can be classified according to a set of possible characteristics. It is hard to find an
agent presenting all the proprieties cited in the previous chapter, but it is clear that some of
them are key in defining the agent’s concept. The Table 1 lists all the main characteristics that
can be used to describe an agent.

Properties Meaning

Sensorial capability Has sensors to gather information about its environment

Reactivity Feels and acts, reacting to on-going environment changes

Autonomy Decides and controls its own actions

Pro-activity Is goal driven, goes beyond reacting to the environment

Persistency Exists during long periods of time

Social skills Communicates and co-operates with other agents or even people,
competes, negotiates

Learning Is able to change its behaviour based on prior experience

Mobility Is able to move from one computer to another

Flexibility Its tasks don’t need to be pre-determined

Agility Ability to swiftly take advantage of new unforeseen opportunities

Character Credible personality and emotional behaviour

Intelligence Ability to reason autonomously, to plan its actions, to correct its
mistakes, to react to unexpected situations, to adapt and to learn

Table I – Agents’ characteristics/properties

Each of these characteristics will be discussed in the next section .

2.1. Sensorial capabilities
Agents must have sensorial capabilities. When the agent interacts with the physical world, for
instance, controlling a robot or a room environment, the sensorial input is supplied by
physical sensors (proximity or tact sensors in robot’s case, temperature, humidity or smoke in
the room’s case). Sensors could be of the on/off type or be able do discriminate between
different digital levels or even be of the analogue type. Armed with those sensors, the agents
can “feel” the environment, be it a structured one (previously known) or not (for instance, a
rover robot exploring a planet like Mars).

This concept of sensing abilities can be extended, when no external physical devices are
controlled, to a computing system, which will be in this case described as a Software Agent.
An agent can monitor the use of an hard-drive or look for the telltale of a virus. We may

Agent-based Systems

7

consider those abilities as being of the sensorial type, like an agent having a virtual sensor for
detecting events in a computational environment.

2.2. Reactive and Deliberative Agents
The Reactive Systems concept come from the Robotics field, where Brooks introduced a
multilevel reactive architecture. Previously “intelligent” robots followed the cycle
“Feel→Plan→Act”, where all actions were planned and, as a consequence, the response times
could sometimes be quite high. Brooks proposed the concept of reactive behaviour, according
to which the system reacts to stimuli without a deep planning.

One can say that the reactive behaviours allow the simulation of human reflexes. We don’t
need to modify the plan we follow to go back home just because the car ahead suddenly
braked. We just have to brake or swerve to avoid it and then retake our normal course. The
reaction is immediate and no change of plan is needed.

Brooks architecture is based on the assumption that the triplet Feel/Plan/Act is not an cycle
but composed of tasks to be performed in parallel. While we brake not to crash into the next
car we can simultaneously start planning a different route to avoid the traffic jam and at the
same time visually check whether an alternate street is unobstructed.

Both in physical (mobile robotics) or virtual (virtual reality, “pure” software) environments,
that exhibit great dynamism, it is advisable to employ agents with reactive behaviours in order
to have them reacting quickly to change. However it can happen that the reactions are not the
most wise (for instance, to drop a pan full of boiling water because the handles are too hot or
to brake a car when driving on ice). Therefore, the complete inhibition of a deeper reasoning
in favour of immediate reactions can induce problems.

The Reactive Systems can come in three flavours:

• Purely Reactive Systems - there is no planning, only reactive behaviours.
• Reactive Systems monitored and controlled by planning - in case of conflict, the

planning module can take control over the actuators bypassing the reaction module.
• Modifiable Reactive Systems - the planning module can change reactive behaviours or

add new ones. These systems can exhibit some adaptive and learning capabilities.
The type of planning that takes reaction into consideration is called Reactive Planning, or
Tactic Planning. It is usually associated to the concept of Online Planning, that deals with
planning during execution.

The opposite of Reactive planning is the planning that is made a priori and does not accept
any changes throughout the execution. It is called Strategic or Deliberative Planning and is
prepared off-line.

Deliberative Agents therefore can be seen as the opposite of Reactive Agents. They keep an
internal representation of the world around them, using an explicit mental state modifiable be
symbolic reasoning. A purely deliberative hypothetic agent wouldn’t change a previously
drawn plan just because the environment had changed. Therefore, in practice, it is hard to find
100% reactive or 100% deliberative agents, most of them being hybrids closer to one or other
end of the spectrum.

Agent-based Systems

8

2.3. Autonomous and Semi-Autonomous Agents
When we say that an Agent acts on behalf of someone, we are implicitly admitting that it has
a great degree of autonomy. Autonomy is, in fact, universally accepted as the most important
characteristic of an Agent, although being not enough, on its own, to characterize it.

Let’s recall Franklin and Gasser definition:

(Franklin & Gasser) – An autonomous agent is a system situated within and a part of an
environment that senses that environment and acts on it, in pursuit of its own agenda and so
as to effect what it senses in the future.

A fully autonomous Agent is an agent that doesn’t need others to assure its existence or
persistency. It doesn’t follow from here that this agent is capable of doing everything, it just
means that it will not freeze just because others (agents or human beings) were not capable of
fulfilling a certain assignment.

Autonomy is essential in situations where the online human intervention is difficult or even
impossible, like controlling a space robot or a spaceship. Autonomy can also be key in
situations where human operators can become “frozen” due to the critical nature of the
situation (for instance, accidents in nuclear power plants could have operators taking wrong
decisions due to psychological pressure).

Agents may also be semi-autonomous. In this case they will partially depend on others and on
human beings. Semi-autonomous agents don’t make sense individually because they depend
on others to fulfil different functions or to validate agents’ decisions.

Figure 1 gives a graphical view of a possible classification of Autonomous Agents.

Autonomous Agents

Agents with/simulation life Robots Software Agents

Biological Agents Agents with artificial life Specific Agents Generic Agents

Humans

Biologic Virus

Dog

Computational Virus

Artificial Life program

Broker

Personal Assistant

Task Manager

Mediator

Shop Assistant

Diagnostic Agent

Collaborative

Intelligent

Interface

Mobile

Reactive

Hibrid

Fig. 1 Autonomous Agents Classification [Franklin-1996]

Agent-based Systems

9

4. Proactive Agents
A Proactive Agent doesn’t limit itself to react to the environment, it has its own vision and
goals. It is an intervening agent, capable of modifying willingly the environment where it
operates.

A web search agent working on behalf of someone is not proactive because it doesn’t change
its environment. However, if this agent is able to produce its own pages, or to try and
convince other sites managers that the information they offer is incorrect or incomplete, then
we can say that we are dealing with a proactive agent.

2.5. Persistent and non-persistent Agents
Persistent Agents are agents that exist permanently.

A computational process is born (process creation) and can go through several intermediate
stages throughout its existence (running, on hold, frozen while waiting for something to
happen) until being no longer useful and vanish (end of process). It is the case with most of
the agents: it has a life cycle relatively short, and is removed when its task has been fulfilled.

A persistent agent has a greater time span. In theory, it should exist permanently. Let’s look at
some examples:

• In an industrial production system an agent representing an sales order or a production
order is not persistent, but an agent representing a machine or production line is.

• An agent responsible for alarm processing in a power system Control Centre is a
persistent agent. An agent in charge of planning the power system restoration after a
serious incident doesn’t need to be persistent.

• An Electronic Commerce agent representing a certain vendor will be persistent. An
Electronic Commerce agent representing an occasional buyer can’t be considered as
persistent.

2.6. Agents with social skills
Usually, an agent doesn’t exist in isolation. It is common for it to have to interact with other
agents, similar or different. In the same way that we talk about societies of individuals, we can
also consider communities of agents. This is the basis for the concepts of Multi-Agent System
and Holonic Systems.

Agents need to gather information and knowledge and therefore they need to establish
communicate between them. Several technological alternatives for communication are
available: peer-to-peer (one to one) communication, broadcast (one for all) communication,
blackboard based communication. Sockets, shared memory and other techniques can be used.

Agents must use a common language in order to be able to understand themselves. They must
share vocabularies and taxonomies allowing a consistent dialogue (ontologies). They will also
need knowledge interchange formats (KIF) and knowledge query languages (KQML -
Knowledge Query Manipulation Language) as the basis of agent communication languages
(ACL) .

Agent-based Systems

10

Cooperation is a concept that is defined at a higher level than communication. Agents
cooperate in order to try and achieve their common goals or to get some benefit. Obviously,
cooperation needs some kind of communication.

A cooperative agent needs to know what its skills are and to have an idea about what tasks can
be accomplished by other agents. This information can be stored in agent’s data or be
obtained by asking a specialized agent about it. Cooperative agents are able to share both
tasks and results (data and knowledge).

Agents can compete between themselves (they can represent, for instance, electronic
commerce companies selling identical products in the web). In that case, agents must have
increased abilities to monitor the environment evolution, namely of being able to watch
closely over its competitors.

Agents with social skills should be able to negotiate. Negotiation is based on announcements,
proposals, offers and decisions and is usually bound by several restrictions (cost, time, quality,
etc), conditions and penalties. Negotiation between agents has been identified since the
beginning of the Distributed Artificial Intelligence, as can be seen in the Contract Net
Protocol [Davis-1983].

In a community of agents it is common for conflicts to occur. Some examples of conflicts are:

• Conflict of Interest - agents have different goals, eventually contradictory;
• Conflicts of Responsibility - different agents want to take responsibility for the same

task;
• Conflicts of Information and Knowledge - agents have different views on the same

situation or reality.
Communities of cooperative agents can be divided in tightly coupled systems and loosely
coupled systems. In the former case, agents are very dependent on each other and, as a
consequence, if one agent fails there is a strong possibility that the multi-agent system also
fails. In the later case, agents have a greater autonomy; therefore, if an agent fails the system
will be able to find a solution, although of lesser quality.

Sociability, or the ability of an agent to operate with other agents within the same society, is
the key to differentiate between an intelligent software system and a system of intelligent
agents.

2.7. Agents that learn
The ability to learn is one of the agents’ characteristics that Artificial Intelligence community
likes to emphasize. In a similar fashion that we are able to keep learning while we interact
with our environment and gathering more information and knowledge, also the agents must be
able to evolve, i.e., to adapt its behaviour according to prior experience.

Agents’ learning abilities shouldn’t be limited to the ones typical of Intelligent Systems,
where the focus is on learning about a specific domain (for instance, learning how to classify
a customer requesting a loan or how to foresee water consumption during a certain period of
time). Agents should be able to display higher levels of learning capability like, for instance,

Agent-based Systems

11

learning to recognize an agent as not reliable in what concerns lead times of previously
contracted tasks.

Let’s imagine an agent that on a given situation takes a decision that later proves to be the
wrong one, becoming aware of that. If, the next time the same situation occurs, the agent
takes a similar decision, then this age cannot be considered intelligent, because it was not able
to learn.

Some of the approaches used in automatic learning are:

• Case-based learning;
• Observation-based learning;
• Learning using explanation;
• Symbolic classification;
• Neural networks.

2.8. Mobile Agents
Mobility is one of the key agent characteristics from the point of view of Distributed Systems
and Computer Networks scientific communities. One should notice that we are dealing here
with software agents, so the mobility we are talking about is not of the physical kind (like a
mobile robot). Agent Mobility is defined as the ability to transfer itself to a different
computational location. Not to be confused also with the concept of software portability.

A mobile agent is supposed to be able to leave the computational environment where it
currently operates and move itself to a different one. It is a program that can migrates from
one machine to another in a heterogeneous environment. The agent chooses when to migrate
and to where. It can suspend execution at an arbitrary point while in a certain machine and
transfer itself to another one, reactivating itself upon arrival and restarting at the same point
where it left.

When agents move across a network they use resources. Attention should be paid to avoid the
overuse or waste of these resources. A realistic mobile agent should be efficient when
evolving in a distributed and heterogeneous environment. During its life cycle, an agent may
visit machines of different types and operating systems, that are used by organizations with
different policies and goals. Mobile agents must be prepared to deal with that kid of
situations.

One example of such an agent is the one that helps in the management of IT infrastructure of
some organization. It will work on behalf of an IT manager going into the computers present
in the network or invoking daemons in all the machines.

An internet search engine is not mobile in the sense that it doesn’t abandon the computer
where it started, although it will search for information located in a lot of computers. A virus,
though, has mobility characteristics because it is capable of spreading into different
computers.

Programming languages like Java made more clear the need for Agents’ mobility.

Agent-based Systems

12

Mobile users have raised a new problem not present in software applications geared to fixed
users. Mobile users care about the cost and reliability of communications. Mobile Agents
technology may be used to address mobile users concerns.

Mobile computing is, as suggested by the name itself, a field that deals with the mobile
aspects of computing. Mobility can be classified according to one of these types:

• only users are mobile, computers being static;
• although computers and users being mobile, both are static during the session;
• users are mobile during the session, raising problems like message forwarding and

connection management.
Mobile agents platforms have bigger problems in what concerns fault tolerance. Mobility also
raises some issues about access priority and security. Mobile agents can be vulnerable to
hostile attacks. These threats can materialize in:

• taps for obtaining confidential information (with or without access keys);
• false identification;
• mobile agents clones
• transaction duplication;
• fraud;
• user information misuse.

Some of the first mobile agents systems were AgentTCL [Gray-1995], Concordia
[Mitsubishi-1997] e Odyssey [Odyssey].

2.9. Flexible and Agile Agents
Flexibility is the characteristic that enables agents to easily switch tasks. In a Industrial
Production System, for instance, when a new order arrives for a known product, a higher
priority can be given to the correspondent production order, even if that implies that the
already issued production orders have to be rescheduled. An agent that is able to react this
way would be considered as flexible.

Agility is a somewhat different characteristic and it has to do with the ability of an agent to
satisfy quickly a new, previously unheard, request or to grab a new opportunity, even if it
means that a new task, not foreseen in advance, has to be performed.

A typical example of agility is the concept of Virtual Enterprise where several companies get
together to address a new market niche where a differentiated product is needed.

2.10. Agents with Character or Personality
Agents are often used to perform certain tasks on behalf of human beings. Will it then be
admissible to wonder if one can assign to an agent a specific character, a personality or an
emotive behaviour? If we create an agent for shopping in an Electronic Commerce
environment we can give them small particles of character. The agent can, for instance:

• avoid buying products coming from certain countries;

Agent-based Systems

13

• avoid buying products made by companies that finance certain political or sport
associations;

• avoid closing deals with companies whose advertising practices have some kind of
characteristics;

• avoid buying from non environmental-friendly companies.

When agents are bound to interact with human beings a great importance must be given to the
interface design. Some work has been done in the development of anthropomorphic
computational personalities that seem to exhibit some kind of emotional behaviour, for
instance, changing facial expression when the user refers something unpleasant. Strides have
also been made towards the user’s emotional status identification. Agents with the ability to
exhibit and recognize emotional behaviour need to access technologies like voice recognition,
natural language, computer vision and graphical computation.

The introduction of anthropomorphic agents poses several questions beyond the mere
technological ones. What will be the real impact of an interface agent looking like a human
face and seeming to exhibit some kind of personality or even feelings? Will the introduction
of such an agent increase user’s comfort and satisfaction with the interaction? Will such an
agent be more persuasive?

Interface agents with anthropomorphic elements are still rare, being more common in research
projects. Some researchers have the opinion that technologies like voice recognition, natural
language understanding or automatic learning haven’t yet reached the degree of maturity
needed to assure the interface agents’ success. Moreover, some critics defend that
anthropomorphic agents may generate confusion among developers and users, create anxiety
in users, decrease his control capabilities, contribute to a lesser sense of responsibleness and
reduce user’s commitment.

This is nevertheless a very active development area. Some proponents defend that
anthropomorphic personalities can be useful. Walker, for instance, studied the way users
answered questionaries online, both of the conventional type and the ones using
anthropomorphic interfaces [Walker-1994]. The conclusion was that the anthropomorphic
interfaces lead users to pay more attention to the questionaries, to commit less errors and give
more suggestions.

There has been lately a large debate about Emotionality versus Intelligence. A person with a
higher IQ or greater skills can be less stable emotionally than another person less intelligent
or skillful. In critical situations, human emotional behaviour is key. Let’s consider, for
instance, the reactions of the pilot of an airplane in trouble or the operator controlling a
nuclear power plant in a complex situation. Software is not always able to sense those
situations and that can be good or bad. Care must be taken when transferring emotional
behaviours to agents.

2.11. Intelligent Agents
Agent intelligence is a characteristic that can be defined using other characteristics. Let’s
illustrate this with the following definitions from Hayes-Roth and IBM:

Agent-based Systems

14

(Hayes-Roth) – An intelligent agent performs continuously three functions: perception of the
environment‘s dynamic conditions: actions that affect environment’s conditions; reasoning
abilities to interpret perception results, to solve problems and determine which actions to
execute.

(IBM Agent) – Intelligent agents are software entities that perform a set of operations on
behalf of an user or program, with some degree of independence or autonomy, using some
knowledge and representation of user’s wishes or goals.

This almost reminds us of the Turing Test used to try and verify wether or not a given system
was human. Trying to adapt the terminology to the current reality, one could say that when we
are not capable to determine wether or not the output of an agent comes from a human being,
then we will be facing an intelligent agent.

IBM’s definition includes the term knowledge, very important since several ago in the field of
Knowledge Based Systems (Expert Systems, for instance) or in Knowledge Management
nowadays. In fact, the more knowledge we are able to impart to an agent the greater the
possibility of reaching something closer to a truly intelligent agent.

A clear distinction between Agents and Intelligent Systems is that it is not enough for the
intelligent agent to display intelligence in its specific domain. The intelligent agent also needs
to know how to interact within an agent community or with humans, to know which agents or
persons are trustworthy, how to negotiate with agents or entities from different backgrounds,
how to deal with conflicts, how to share knowledge, and so on.

In Figure 2 Cooperation, Learning and Autonomy are presented as the main characteristics of
an Intelligent Agent.

Fig. 2 - A possible vision on Intelligent Agents [Nwana-1996]

Agent-based Systems

15

Several research efforts has been focusing on the analysis of human and agent intelligence.
How do we evaluate another person’s or agent’s intelligence? If we pose two persons or
agents a set of questions, we will tend to consider as more intelligent the one that gives more
correct answers and does that quicker. Likewise, we will more easily trust the answers given
by a human being or an agent that is branded as an expert. The intensity of the criticism that a
certain solution faces can also skew our evaluation. There is often the tendency to consider
that the more critical analysts are the ones more competent. The same considerations we can
make about the subjectivity on judging other people’s intelligence can also be made when we
are dealing with agents.

The very same fears that existed in the past about robots and Artificial Intelligence seem to
have been replicated now with the Agents. When we consider intelligent agents capable of
having opinions or deciding about purchases or sales of products or stocks, it becomes clear
that the automation of human tasks by computational means is evolving from the more
repetitive and tedious to the value-added, knowledge-intensive kind of tasks.

Agent-based Systems

16

3. Agents and Multi-Agent Systems’ examples

This chapter will contain some brief examples of Agents and Multi-Agent Systems. The
reader will be able to better identify the concepts and characteristics previously described.
Possible applications of these technologies to Electronic Commerce, Manufacturing Systems
and Traffic Control will be discussed.

3.1. Electronic Commerce
Agents are software entities to whom were given autonomy and intelligence enough to be able
to perform specific tasks with little or no human supervision. An agent usually interacts with a
continuously changing environment, while representing the interests of some entity.

The convergence of Computing and Telecommunications technologies, specially after the
internet generalization, had a strong impact in the way commercial transactions are
conducted. Internet growth surpassed the most optimistic expectations. From 17 million in
1992, the number of internet users reached 1262 million in November 2007, of which 343
million in Europe only1. Most of internet users already tried to buy something on the web. As
early as 1995, 5.2 million european consumers used the internet to buy products or services
with a total value of 3032 million €. The equivalent figures for 2002 were around 28.8 million
users spending an estimated value of 57210 million €. These figures reflect only direct
purchases by internet users and do not include the business to business (B2B) transactions, far
more developed that the private ones. Although totally reliable data is not available, the total
Electronic Commerce figures for 1999 may have totaled 95 thousand million USD and in
2003 this figure may have been multiplied by a factor of 100 to 200.

Several tools for online business setup have been developed, like Merchant from Microsoft,
Net Commerce from IBM and Dynamo from ATG.

I makes sense to use agents in Electronic Commerce because they can automate several tasks,
like visiting web sites or gathering data from the internet, much more quickly than human
beings. This is particularly important in markets where the prices keep changing all the time
(stock markets, raw materials exchanges, etc).

Security issues with agent-based Electronic Commerce should be seen under a different light
than with conventional applications. The latter are focused on transaction security (SET or
SSL standards). Agent-based Electronic Commerce applications must also offer this kind of
protections but when we see agents as representing people or organizations, we must consider
eventual “damages” that agents may provoke. Agents may overspend, may buy unwanted or
illegal products or may close deals with unreliable vendors. Therefore, security in agent-based
Electronic Commerce must be addressed differently. The main concern is not at the
transaction level, although this must be assured by other means, but at the trust level: will we
trust an agent with our credit card data?

Agent-based Systems

17

1 Source: http://www.internetworldstats.com/stats.htm

http://www.internetworldstats.com/stats.htm
http://www.internetworldstats.com/stats.htm

When we talk about Electronic Commerce we are dealing with two different levels: individual
purchases and transactions between companies (B2B).

With individual purchases the main difficulty is how to personalize the agent. The normal
procedure is for a customer, using a internet-enabled computer, to make a few searches using
browsers, to identify and compare products and ultimately making choices. We will have to
distinguish between standard products (a book or a CD) and differentiated products like
clothes. In the first case, agents’ introduction will much easier. A script for the agent to
perform could be:

Search all the websites selling the product X
Identify the one with a lower price (including freight costs)
Make the order if the price is lower than PrX.

Obviously it may be more complicated than that if the user wants to consider aspects like the
delivery time, the trust that the supplier inspires, the payment terms or the existence of
eventual bonus. The problem may get even more complex if the user wants to order a set of
different products that may be not all available from all the suppliers. In this case, the agent
must show a greater level of intelligence in order to be able to select the right suppliers.

When we consider the Electronic Commerce dealing with individual purchases of
differentiated products, the use of agents for automatic decision making becomes much more
complex. The main difficulty is that no consumer is willing to buy an unknown product. It is
hard to imagine someone giving an order to buy “a pair of brown shoes size 38”. In this case
agents must be seen solely as entities looking for products that fit into a certain description
given by the user.

In any case, so far we are considering agents as individual entities even if they may actually
be dealing with virtual instead of human vendors.

We can also center Electronic Commerce on the vendors side. Here the agents should be
responsible for the product advertisement and transaction security. A more complex agent may
even be able to assure more demanding tasks like transaction analysis or competition
monitoring. It may, for instance, reach the conclusion that the sales of a certain product
decreased because of an alternative offering by a competitor at a lower price. This way,
quicker reactions to market changes will be possible, leading to lower losses or bigger gains.

Seller agents can also model the customer, identifying a profile. For instance, if it is known
that whoever buys products P1 and P2 falls usually within a certain profile of people
characterized by also buying the product P3, then if someone buys P1 and P2 it may be
assumed that person will be also interested in P3. Data Mining techniques are adequate to
extract conclusions of this type, giving a better insight into the market and consumers profile,
enabling “targeted” marketing. It should be noted that if a real, physical store is converted into
a virtual one the vendor looses direct contact with the customers and the correspondent
possibility of getting inputs from them. Data Mining can be used to automatically recover
some of this visibility, analyzing past transactions history.

Buyer agents must know how to find out who sells the required products and how to place an
order. This can be accomplished by storing in the agent a list of websites and information

Agent-based Systems

18

about the ordering procedures. If it is required for the agent to search for new vendor sites
they must be able to use a language for automatic content reading (like, for instance, XML).

In the Electronic Commerce between companies the products have well defined
characteristics. In the auto industry, for instance, the car producer buys components (like tyres
and cable assemblies) and raw materials (like glue and metal sheets) from suppliers. The
supply chain can include, for instance, electric cable manufacturers that need copper and PVC
in order to supply the cable assembling companies. Then, if agent technology is being used,
we can start talking about a Multi-Agent System.

In this environment, buyer agents must be much more careful with potential vendors than in
the individual type of electronic commerce. Parameters like component quality levels and
delivery time reliability are vital. If the vendor selected to supply cable assemblies delays the
deliveries, then the automaker, unless it has an adequate security stock, will be forced to delay
theirs. Therefore, electronic commerce between companies requires a great care in selecting
the right supplying partners. Usually, agents already know with whom negotiation must be
established but they may face situations where they have several suppliers for the same type
of products, and they will try and decrease prices and increase the assurance of deliveries
being met.

Agents need to embody enough intelligence in order to close good deals. They may also be
given argumentation capabilities in order, for instance, to be able to schedule deliveries in a
way that decreases inventory costs. These agents may need to monitor security stock levels of
components and raw materials.

In an Electronic Commerce environment can also exist intermediary agents who try to make
easier the establishment of deals between buyers and sellers. Buyer agents and seller agents
can have the ability to negotiate prices, delivery times, payment terms and so on. Negotiation
may or may not involve intermediary agents but in the last case, they must be trusted by both
sides (buyers and sellers).

3.2. Robotics
We will demonstrate the use of agents in Robotics with a few examples:

The first example is a robot that identifies individual components by means of a computer
vision system and sensors and that is able to perform manipulation and assembly tasks. We
can have agents with different capabilities, namely the component identifier, the trajectory
planner (used to avoid collisions), the assembly planner and the execution controller. There
can be more than one robot performing tasks, which makes the need for cooperation more
pressing (for instance, in order to avoid a collision between two robots). Additionally, two
robots may also cooperate to together perform a task that couldn’t be done by a single robot.

The second example is about a robot community that is exploring a uncharted geographic area
(like a new planet ground or the sea floor). Each robot must have autonomy and intelligence
in order to decide where to go or how to avoid collisions with obstacles detected by its
sensors. In that sense, these robots can be seen as agents. These agents can communicate
directly between themselves, sharing data and knowledge. A robot can, for instance, inform
the others about the existence of an obstacle with certain dimensions in a certain position. It

Agent-based Systems

19

should be noted that these agents, unlike the ones from the previous examples, are
functionally identical. In this case, the possibility of conflicts arising can be greater. Another
robot can, for instance, answer saying that had already passed by the coordinates indicated
and found no obstacle.

The last example is about robotic football (RobotSoccer). We can imagine a team of robots,
each one associated with an agent, with sensors and actuators. A camera grabs an image from
above that is fed to another agent (the coach) who will keep sending instructions to the several
agents, in order to correct some aspects previously planned. Although the agents being
identical, they may have to perform different functions (goalkeeper, defender, forward). These
agents can show reactive behaviors (for instance, a goalkeeper must react swiftly when a
forward from the opponent team comes with the ball from the other side). Here, we can see
the differences between strategic and tactic planning. Another aspect to consider is that not all
of these agents can be seen as cooperative, the other team’s agents are competitors.

3.3. Manufacturing Systems
Manufacturing Systems are characterized by a high degree of complexity, being naturally
distributed both from the physical point of view (several machines, assembly lines,
factories...) and logical (different products, sales and production orders to be dealt with
simultaneously). In this environment it is common to find Multi-Agent Systems and a
particular emphasis on the negotiation aspects.

Cooperation and negotiation can be seen at different levels, like, for instance:
• Between resources belonging to the same assembly line or manufacturing cell;
• Between several assembly lines or manufacturing cells;
• Between one company and its suppliers or customers (the extended company);
• Between several companies in order to take advantage of a new business opportunity

(agility, virtual enterprise).

Let us consider a simple example of task scheduling in a manufacturing system composed of
several resources (robots, CNC machines, automatic warehouses, etc). We can have agents
representing system’s physical resources and other agents representing the tasks to be
performed (be it at sales order or production order level).

A task simulation agent will need some parts stored at the warehouse, must use robots to fetch
them and will also require the work of CNC machines. It will be obliged to negotiate with all
these resources in order to reach agreements allowing the task to be performed successfully,
assuring that requirements like delivery dates, quality levels and acceptable costs are met. The
problem grows more complex when several tasks must be negotiated with several resources at
the same time. We will have agents representing each task, almost like customer
representatives within the company, and also an agent for each resource who is able to
negotiate with the different task agents. It is an approach clearly distinct from the centralized
intelligent system that may use heuristics of task dispatch but that doesn’t represent
adequately the intervenient entities. With agents, the Manufacturing System can be seen as a
Social System.

Agent-based Systems

20

3.4. Traffic Control
Air traffic control is a critical and complex application also characterized by a distributed
nature. We can imagine agents representing flights, airplane queues or runways. We can also
have agents that are able to consider aspects like, for instance, atmospheric conditions. The
problem in analysis is clearly of the scheduling type and we can even make a comparison with
the manufacturing system:

Flight ⇔ Production Order, Sales Order
Runway ⇔ Machine
Time between liftoffs ⇔ Setup time

Another example of a traffic control application is the urban traffic control system. Agents can
be associated to the semaphores, with sensors measuring the traffic flow or the queues size.
Agents can negotiate in order to maximize traffic flux. That way, if in a certain crossing one
direction there is a much greater intensity flux than in other, then the semaphores’ timing can
be adjusted. Several semaphores lined up in a row can also coordinate among themselves in
order that the cars are not forced to consecutively stop in most of them.

Agent-based Systems

21

4. Shortcomings of the Agents-based solutions

Some of disadvantages of Agents based solutions are:

• There is no system controller - agent based solutions may not be adequate for problems
where global restrictions must be enforced. when a realtime behavior be assured or
when deadlocks must be avoided.

• There is no global system perspective - an agent’s action is determined only by its local
status. Complete global knowledge is not achievable and therefore agents globally
cannot reach more than sub-optimal decisions.

• Trust and delegation - for someone to delegate tasks on agents one has to trust those
agents. Organizations need more experience about using autonomous software agents.
The trust building process is a slow one. A careful personification of the agents could be
a way of increasing user’s trust on agents. Another aspect to be considered is how to
assure that agent really is representing us?

The first two limitations detailed above simply derive from the fact of agents communities
being distributed systems. Nevertheless, it is the third shortcoming that limits the most the
acceptance of agent based solutions. Let’s suppose, for instance, that someone grants us
access to a configurable agent specialized in internet purchasing in the user’s behalf. Would
we be able to trust this agent enough to supply our credit card data and grant it authorization
to place orders?

This seems to lead to a new way of developing agents. If the agent’s purpose is to substitute
the user then the agent should be seen from the start as a Decision Support System that
doesn’t limit the user’s choice but instead makes suggestions, accepts changes and is able to
learn from the interaction with the user. This way, the agent will be seen as an adaptive entity
with a behavior increasingly close to the user’s. The user’s trust will increase bit by bit until
the agent is deemed fully trustable. This approach, called “Scalable Intelligence”, describes
the process of converting a simple Decision-Support System in a full Agent.

In a Decision-Support System with Scalable Intelligence the decision maker can use as much
system intelligence as he wants. It is like having a scale varying in the range [0,1]. At the
lower limit, the Decision-Support System is just a simple tool, without decision capability.
With time, the decision maker will try some of the more clever functionalities of the system,
being able to limit them as he sees fit. As the decision maker verifies the suitability of those
functionalities, he is building his trust on the system and will be able to increase the system
abilities, which corresponds to increasing the system intelligence level within the scale. With
time more competences will be being added to the system, specially if it is easily adaptable to
the user or presents more intelligent characteristics like the ability to engage in an intelligent
dialogue and to learn with the decision maker. In doing so, it is increasing the intelligence
level until reaching the upper scale level (an hypothetical limit). At that moment, the decision
maker fully trusts the system, by that meaning that he trusts an Intelligent System that is able
to adequately substitute him in a set of tasks for which the Decision-Support System was
originally designed. Therefore, this system is able to be substituted by an Intelligent Agent
provided that it is given autonomy [Ramos-2001].

Agent-based Systems

22

5. Problems with the development of Agents and
Multi-Agent Systems

In spite of all the effort made in developing Agents technology, little has been done
concerning how to implement those systems (Agents’ “Engineering”).

Michael Wooldridge and Nicholas Jennings have identified several categories of problems
hindering the development of agents oriented systems, among which the following
[Wooldridge-1998]:

1) “Political”;
2) Management;
3) Conceptual;
4) Analysis an Project;
5) Micro-level (Agent);
6) Macro-level (Society);
7) Implementation.

5.1. Political problems
5.1.1. Optimism with Agents’ technology (to “sell” the concept)

Agents technology offer a natural and powerful way of conceptualizing, designing and
implementing systems. But they are not a “magical” paradigm. Tasks that are beyond
automation and for which have already been tried conventional, not agent-based, techniques
will not be treatable only because agents are being used. Agents must be able to solve the
specific tasks they were built to address but the technologies available have still the same
shortcomings like, for instance, combinatorial explosion or lack of information.

Agents are not able to present reasoning abilities similar to human beings. Therefore, as
happened with Artificial Intelligence, agents’ technology acceptance will suffer if an
exaggerated optimism is displayed.

5.1.2. Agents as a dogma

Agents can be applied to a large array of problems and applications but they are not an
universal solution. There are many problems and applications that are adequately dealt with
the conventional paradigms (like, for instance, the OOP). There is, in fact a risk of
considering that Agents are the correct solution for all kinds of software problems.

The way agents are defined is not the same for everybody and different people deems
different characteristics as more important. Who stresses a certain specific characteristic tends
to develop applications using that characteristic even when it is not advisable to do it (for
instance, mobility may be useless or even not adequate in many situations).

Agent-based Systems

23

5.2. Management problems
5.2.1. One doesn’t know why agents are needed

Optimistic forecasts tend to induce some managers to adhere too easily to the concept,
specially when it seems intuitive (as it is the case with agents) and easy to sell (agents that are
able to free us from a lot of tasks). Some projects are started without having clear purposes
and therefore turn to be very difficult to manage.

This attitude is associated with a lack of clarity of how agents should be used in a way that
adds value to the products. It is therefore needed that we lay out clearly the reasons why a
certain project should be developed using agents, trying to ascertain what the project can gain
from the use of this technology.

5.2.2. One doesn’t really know what the developed Agents are good for

One can fall into the trap of developing some new technology or platform using agents before
clarifying the exact application that those agents or technologies would have. In that case, the
work already done may be totally inadequate (because, for instance, it doesn’t fit with the
other components of the system) or only a small subset of the functionalities is actually
needed (making the solution unnecessarily expensive and complex).

We should try and understand where agents technology is more appropriate and avoid using it
on everything situation.

5.2.3. Attempting to develop generic solutions to specific problems

Too often, Agent technology advocates defend the use of generic architectures that may be
applied regardless of the specific domain. This is a reminiscence of the early times of
Artificial Intelligence when many researchers thought that it would be practical to develop
generic problem solvers.

5.2.4. Confusion between prototypes and systems

Once an application has been found for which agents technology seems adequate, it is a
reasonable simple task to develop a prototype (a few agents performing some useful and
simple tasks). Nevertheless, the transition from prototype to system is much more complex
and the rapid prototyping that was done may prove misleading. Agents deal with several
complex aspects like:

• Distributed and concurrent problem solving;
• Flexible and sophisticated interface between components;
• Complex individual components with context-dependent behavior.

5.3. Conceptual Problems
5.3.1. To believe that agents are a miraculous solution

There is sometimes the idea that a certain technology will promote a great development (an
order of magnitude greater than the previous ones). This is starting to be the case with agents
technology. In spite of being very promising and even considered by many as the next

Agent-based Systems

24

programming paradigm, this technology still needs to be thoroughly tested and yield
consistent results.

5.3.2. Confusion between commonplaces and concepts

One of the positive aspects of agents technology has to do with their being a intuitive concept.
This can lead people to think that they fully understand it when in fact they don’t. The use of
clichés, very usual in management, has sometimes the effect on the designing of new systems,
in an attempt to make them appear as being state of the art.

5.3.3. To forget that we are developing software

Being agents technology still a research area, there are still no adequate techniques to assist
systems development. Agents’ projects tend to involve tasks like finding the adequate
architecture, developing cooperation protocols or improving the coordination and coherency
of the multi-agent activity.

Usual Software Engineering processes like requirement analysis, specification, project,
verification and test are often forgotten, with dire consequences. It is true that those processes
were not conceived with a community of agents in mind but it is better to use what is
available than nothing at all. To disregard Software Engineering can lead to system failure not
because of the agents per se but because good practices of software development were not
followed.

5.3.4. To forget that we are developing distributed software

Distributed Systems are known to be complex systems, difficult to project and implement.
Multi-Agent Systems are inherently distributed. The problems plaguing Distributed Systems
don’t simply vanish just because we are using agents. On the contrary, multi-agent systems
are even more complex than distributed systems. The one that projects and develops multi-
agent systems should be proficient in the core techniques of distributed systems
(synchronization, mutual exclusion, resource sharing, deadlocks, and so on).

5.4. Analysis and Project problems
5.4.1. Not to explore associated technologies

In the development of a Multi-Agent System a good part of the effort should be devoted to the
use of different technologies that may enhance the multi-agent system and need to work well
in order to improve system performance.

5.4.2. The project doesn’t explore the concurrency

It is common to find multi-agent systems where an agent does some processing, produces
some results which are passed to another agent and falls in a sleeping mode. The agent
receiving the results processes them and sends the results to another agent, entering after that
in sleep mode as well. The process repeats itself until the desired outcome is reached. These
systems don’t use concurrency and could be designed as a conventional centralized program,
with several modules.

Concurrency is precisely one of the main advantages of multi-agent systems. It gives the
ability of dealing simultaneously with several perspectives and purposes, to answer and react

Agent-based Systems

25

to the environment at different levels and to consider complementary methods of problem
solving in a coordinated mode.

5. Micro level problems (Agent)
5.1. We want to have our own agents architecture

There may be the temptation to consider that none of the existing architectures answer the
requirements of our problem and that it will be necessary to specify and project a new one.
The “not invented here” syndrome leads to the unnecessary development of new architectures
because one only trusts in-house developments. However, the development of a new
architecture can take years to complete and there is no assurance that such an effort will be
rewarded and its results reused.

It is advisable to take the time to study existing architectures and to acquire the respective
licenses or to implement already tested architectures.

5.2. To presume that the architecture being used is a generic one

The people developing an architecture may have the temptation to believe that it may be a
generic one. And it is all the more tempting if the architecture was successful in a certain
domain. However, this architecture’s characteristics may be inadequate for a different domain.
If we developed an architecture successfully used in a specific application we should try to
understand the reasons behind that success in that particular domain.

5.3. Agents use too much Artificial Intelligence

The reading of articles and reports with examples of Artificial Intelligence techniques in
Agents may lead to the conclusion that the more Artificial Intelligence is embedded in our
agents the better will be the performance of that community of agents. Many of those
Artificial Intelligence techniques are not robust enough and that can impact negatively the
success of our project. It is wise to follow the saying “think big but start small”. It is better to
try first a solution with little Artificial Intelligence and slowly embed more with time.

5.4. Agents have no intelligence

Too often, for reasons of marketing, solutions that would otherwise have been classified as
mere distributed systems are now described as multi-agent systems. It is also common to see
web pages with some additional processing classified as agents. This is incorrect because
voids the term “agent” of all the meaning. Besides, that attitude deceives the users that bought
a conventional software wrongly classified as agents.

5.6. Macro-level problems (Society)
5.6.1. We see agents everywhere

Once we grasp the concept, we may tend to believe that almost every system may be seen as
an agent. In the limit, we could have an agent to make sums and another to make subtractions.
This line of thought will end creating so many agents and consuming so many communication
resources that the resulting systems will be very inefficient, if not utterly impossible to build.

Agent-based Systems

26

Generally speaking, we should have a coarse granularity for the agents due to the fact that an
agent should embody coherent abilities and functionalities. The idea of decomposing agents in
other smaller agents may be interesting but may lead to computational overloads that end up
giving disappointing results.

5.6.2. We have too many agents

One of the most interesting aspects of the community of agents has to do with the occurrence
of emergent behaviors when we have a great number of agents. A behavior is said to be
emergent when it was no globally foreseen but ends up occurring as a result of the agents’
processing and interaction.

These behaviors may be a positive thing, generating useful work, but they may also create
chaotic situations. It is difficult to control the dynamics of a system when we have a big
number of agents. Besides, we will also have the communications overload problem, already
discussed.

5.6.3. We have too few agents

Too often the developers of systems using agents fail to understand the gains we can get from
the concurrency factor and tend to develop communities with too few agents, each one
concentrating too many tasks and functionalities.

5.6.4. We spend too much time creating the infrastructure

Agents’ technology an emerging area, only now start appearing the first platforms with
enough credibility for the development of agent-based solutions. However, in the past these
solution were not available and every Multi-Agent System project had to include a significant
workload and budget just for the development of the basic platform (messages, runtime
control, monitoring, etc).

Even now, the existing platforms may be risky bets because they may well start and be
discontinued sometime after. Some of them are very good for monitoring what is happening
within the multi-agent system but are, at the same time, very heavy, while others, on the other
hand, are lighter but not very useful for the developer.

It is also common to find communications infrastructures developed by people from the
Artificial Intelligence area, instead of developers coming from the distributed systems and
communications, what may hinder the stability of the infrastructure.

5.6.5. The system is chaotic

Sometimes one thinks that by simply adding a set of agents without interaction, a community
of agents has been created. However, most of the multi-agent systems need some kind of
structure, definition of competences and control, in such a way that the agents community will
be able to do some useful work, reaching its purpose.

5.6.6. Confusion between simulated and real parallelism

The multi-agent system project often starts in a single computer, using independent processes
or threads. this may be easier in a initial phase of the development because we don’t need
several networked computers. However, going from the parallelism simulated in a single

Agent-based Systems

27

computer to the real parallelism in a network environment supposes an order of magnitude
increase in the complexity of the multi-agent system control mechanism.

7. Implementation Problems
7.1. Tabula rasa

When we start the implementation phase we often make the mistake of admitting that
everything must be developed from scratch. However, this is not the case in many situations,
where critical components exist already, have been thoroughly tested and proven reliable.
Those components, although eventually obsolete, are difficult and costly to substitute. It
should then be studied how to use these “legacy” systems without, in most cases, having the
possibility of interfering with them.

7.2. Ignore the standards

The standardization in the agents field is in a primitive state. There are proposals but the
standards have not been globally accepted what prevents them from being used. This is a
major problem when we need to have agents working together, that have been developed by
developed by different groups.

In spite of the lack of standardization, it is advisable to try and follow some of the proposals
related to agents interaction (KIF, KQML, ACL).

Agent-based Systems

28

6. Agents and Multi-Agent Systems’ architectures
An agent architecture determines its internal structure, by defining the modules that handle
the various tasks to be performed by the agent and the way these modules interact in order to
intervene on the agent’s environment.

Usually, an agent is involved with one or more communities. Therefore, it makes sense to also
address the issue of multi-agent system architectures, which define the way the agents are
organized in order to collectively solve a problem.

We may establish an analogy saying that the agent relates to the psychology of an individual
whereas the multi-agent system relates to the sociologic aspects of a group of individuals.

6.1. Agent’s Architecture
In this section we are going to study some basic agent architectures, not in a thorough way but
trying to describe their main modules.

The first one to be studied is the BDI architecture (Belief, Desire, Intention) illustrated in
Figure 3. The basic concept behind this architecture, that should be considered as a
deliberative one, is the description of an agent’s internal processing state using mental
categories. This way, it is possible to establish a control mechanism by which an agent
rationally selects the actions to be performed according to its representations. The mental
categories to be considered are the beliefs, the wishes and the intentions. Additionally, higher
level categories may be defined, like goals and plans. Let’s describe those categories in more
detail:

• Beliefs - agent’s expectations about the current state of its environment, taking into
account that a certain action may not cause the expected outcome;

• Wishes - correspond to an abstract notion that indicates preferences about the future
states of the agent’s environment or the course of action to be followed. Agents may
have wishes that are inconsistent with the reality and obviously don’t have to believe
that their wishes will necessarily turn into reality.

• Goals - it is a more restrict definition than the one for wishes because the agent must
consider its goals as plausible, as being achievable.

• Intentions - due to the fact that an agent has limited resources, it may happen that not
all the goals are achievable at the same time. Therefore, it may be needed a
compromise about what priority to assign to each of the existing goals, defining
commitments. That process is called intention formation.

• Plans - are pragmatic implementations of the intentions. Intentions can be seen as
partial action plans. The agent makes a series of commitments stating that it has the
intention of fulfilling the specific goals.

Two of the projects using BDI architecture are IRMA [Bratman-1987] and [Rao-1991].

Agent-based Systems

29

Fig. 3 - BDI architecture

The second architecture to review is the reactive one proposed by Brooks [Brooks-1986] and
also known as “Subsumption Architecture”. In the 80’s, Brooks criticized the trend in
intelligent systems design to consider a set of functionalities (like, for instance, sensors,
planner, learning module, truth maintenance, execution module) working in series. Brooks
proposal is based on a activity-oriented decomposition , with activity producers working in
parallel, directly connected to the outside world through sensors and actuators (Figure 4).

Fig. 4 - Reactive architecture

Agent-based Systems

30

Belief Revision

Beliefs

Sensors

Options Generation

Desires

Filter

Intentions

ActionResult

Sensors Actuators

Environment

Condition - Action Rules

Perception Action

The third architecture to be described is the ARCHON (Architecture for Heterogeneous On-
Line Systems). This architecture was developed in the ESPRIT-II european project
[Wittig-1992] and is illustrated in the Figure 5.

Figure 5 – ARCHON architecture

This architecture’s basic principle is that any pre-existent system (depicted as Intelligent
System in the diagram) may be encapsulated by an ARCHON layer so that he may turn into
an agent. This way, an agent will always be made of at least two main components: the
Intelligent System and the ARCHON layer. Nothing obliges those two components to run in
the same computational resource. The Intelligent System will be responsible for the useful
work to be done by the agent (for instance, to recognize an object using a computer based
vision system or to assure the task of scheduling air company crews) while the ARCHON
layer is responsible for the cooperation with the other agents in the community and to control
the Intelligent System.

The ARCHON layer’s modules are the following:

• Self-knowledge (SK) module

• Community knowledge (CK)module

• Monitor

• Planning and Coordination module

• High-level communication module

Agent-based Systems

31

The purpose of the SK module is to hold the representation of what the Agent knows about
itself and the tasks it is able to perform. The CK module reflects what the Agent knows about
the other agents belonging to the community. Both contain static knowledge (the SK module
contains information about what the agent knows how to do, which is usually permanent, and
the CK module has the information about who may provide a certain service) and dynamic
knowledge (the SK module may contain information about what the Intelligent System is
doing now, with the CK module containing information about the tasks being performed by
the other agents).

The Monitor is responsible for the interaction with the Intelligent System (IS) associated with
the Agent and the control of its activities. It receives requests and data coming from the
Planning and Coordination module, schedules the tasks to be performed by the IS (and has the
power to interfere with the way the tasks are accomplished), receives the results from the IS
and transfers these results to the Planning and Coordination module.

The Planning and Coordination module decides when and how the Agent must establish a
cooperative relationship with the other community agents. It is the module responsible for the
global assessment and the dynamic planning of the agent’s activities. It decides to whom the
requests must be addressed and what restrictions must be associated with those requests.

The High-level communication module defines how the dialogue between the Agent and the
other members of the agent community will be done. It uses a message passing mechanism
(socket based) with three additional services: intelligent addressing, filtering and message
scheduling.

More details on the ARCHON architecture may be found on [Wittig-1992] and
[Ramos-1993].

Finally, we will describe the architecture proposed by [Sousa-2000] which is based on the
Holon concept [Koestler-1967].

The Holon concept was introduced by the hungarian philosopher Arthur Koestler in 1967. The
term holon results from the combination of the greek word holos, meaning “whole”, with the
english suffix on that suggest “part”, as in proton or neutron. Therefore, holon refers to the
whole and the part, betraying a recursive nature: a holon may be made of holons and be part
of one. Additionally, a holon may belong to several holons simultaneously. Although having
been devised by a philosopher, the holon concept has been adopted by the Intelligent
Production Systems scientific community as a model capable of describing adequately a
Production System [Ramos-1996]. It is possible to detect a strong similarity between holon
and agent concepts. In the next section, we will refer again the subject when introducing the
holarchy concept.

In the architecture proposed in [Sousa-2000], described in Figure 6, we can see that he holon/
agent is made of Sensors, Actuators, Protocols, Actions, Reasoning and Knowledge Base.
This holon/agent is capable to interact with humans, the environment and other holons.

The Sensors and Actuators blocks represent the system interface, enabling the interaction with
humans, the environment and other holons. The block Protocols handles the representation of
the information gathered by the sensors (perception). The protocols may be identified by a
finite state machine of a communications protocol or a man/machine interaction. This block

Agent-based Systems

32

allows for the direct execution of actions and the knowledge processing by the Reasoning
block.

Figure 6 – Holon/Agent architecture [Sousa-2000]

The Reasoning block produces results using its knowledge (Knowledge Base) and the data
coming from the sensors. It defines the very nature of the holon, specifying how the holon
should behave according to its mental state and the purposes that it has been assigned. The
holon’s knowledge may have several sources: it may be inherent to the holon’s conception; it
may be learned from experience or observation; it may come from other holon. The
Knowledge Base of each holon must contain a set of general and specific axioms.

1. Multi-Agent System architectures
A Multi-Agent System architecture describes the relationships between agents looking for a
solution for a given problem. The architectures may be generic or oriented to a specific
problem, they may be more centralized (like a hierarchic structure with a centralizer agent) or
more distributed (like, for instance, an “anarchic” structure). The involved agents can be
functionally different (complementary) or identical (concurrent, with a greater probability of
conflicts). The architecture may be fixe or changeable.

In this section we will look into some Multi-Agent System architectures.

The first architecture to be studied is the CIARC (Cooperative Intelligent Assembly Robotics
Community) [Ramos-1993]. This multi-agent architecture was used in an assembly and
manipulation system using a robotic handler with a articulated arm. It worked with objects
laid down on a table and would made the assembly, placing the objects in their final positions

Agent-based Systems

33

Environment

Protocols Actions

ActuatorsSensors

"Reasoning"

Knowledge Base

and orientation. Two computerized vision systems were developed (VISION using a 2D
approach and LASER, a 3D system) capable of recognizing and identifying the position and
orientation of the objects.

The agents integrating the multi-agent system were:

• WD (World Descriptor) - capable of establishing symbolic relationships between
objects. It could, for instance, conclude that an object was on top of other;

• TLP (Task Level Plan) - capable to generate high-level symbolic plans to manipulate
objects (like inserting A into B);

• ELP&TE (Execution Level Planner & Task Executor) - controls the robot. It is
capable of geometric reasoning in order to materialize the symbolic operations issued
by the TLP agent. It is a reactive agent and uses proximity sensors during task
execution. Therefore it can react to unexpected situations like the obstacle detection,
followed by mapping and obstacle remotion.

• MODELS - this agent stores several object models which are useful for creating
symbolic relationships and the execution of assembly and manipulation tasks.

If we exclude LASER and VISION agents, that had an identical function, all the others were
functionally different. The problem was then decomposed into subproblems to be solved by
the agents. Figure 7 can give an idea of the flux or requests between agents during a typical
task execution in the system CIARC.

Figure 7 – CIARC: task execution requests

The user, that may be seen as another agent, makes a request to the agent ELP&TE for a
certain assembly task to be performed (request 1). ELP&TE needs to know the objects’
location (position and orientation) and asks that to agents VISION and LASER (request 2a). It
also needs to know the manipulation models that it requests from MODELS (request 2b), the
symbolic relationships and restrictions to be supplied by WD (request 2c) and the high-level
symbolic plan by TLP (request 2d). Now TLP needs the objects’ location from VISION and

Agent-based Systems

34

LASER (request 3a) and the symbolic relationships and restrictions from WD (request 3b).
WD will request the geometric models from MODELS (request 4a) and the objects’ location
from VISION and LASER (request 4).

We will now describe the holonic architecture to be applied to a Production System. In this
architecture we will have holons representing tasks (HT), holons representing resources (HR)
and others representing products (HP).

The basic task holons may get together to form task holons of greater dimension, or instead, a
task holon can be decomposed in several more basic task holons. A task to make 10 sets of i
table and 4 chairs may be decomposed in 2 task holons, one to make 10 tables and another to
make 40 chairs.

Likewise, resource holons may be decomposed or be part of other holons. let us consider, for
instance, a production cell with a lathe, a milling machine and a robot. The production cell
may be a holon with 3 holons as components (lathe, milling machine and robot). That cell
may be inserted in a production line holon, made of several cells. Several production line
holons may be part of a factory holon.

Something similar may be seen with the product holons. In this case, they may be composed
of component holons (themselves also being products).

The various phases of the production process may involve different holons. The scheduler
holon (HEsc), for instance, is composed of task holons and resource holons and the process
planning holon (HPP) is composed of resource holons and product holons.

A holonic organization can be defined as having a holarchic structure (holarchy) like an
organization can be said as having a hierarchic structure. The holarchy is going to define the
cooperation style, subjecting the holons to pre-defined goals and limiting their autonomy
(without this restriction we will have something like an anarchic system).

Figure 8 presents an example of a holonic architecture applied to productive systems.

Fig. 8 – Production system’s holonic architecture

Agent-based Systems

35

Agent-based Systems

36

7. Agents and Multi-Agent Systems support
services

An infrastructure to support Agents and Multi-Agent System should provide a set of services
that will exempt the developer from the obligation to build a system from scratch, letting them
concentrate in the modeling, project and implementation of the agents.

This section will deal with the main support systems. They can be classified as follows:

• Communications;

• Security

• Directory or Informations

• Conversation

The main bibliographic source for this section is [Silva-1998].

7.1. Communications
We will discuss here several basic aspects like message exchange, synchronization, pooling
and forwarding.

7.1.1. Message exchange

A basic aspect of communications in Multi-Agent System is the message exchange. We will
now refer the main message exchange mechanisms.

7.1.1.1. Point to point message exchange

The Point to point communication is based on a bilateral message exchange. The message is
sent by an agent and received by another but no other agents will know about it.

In a multi-agent system this type of communication occurs when the agent knows to whom it
wants to talk to in order to get or supply some kind of information.

7.1.1.2. Group message exchange

In this case an emitter agent will send a message to a group of receiving agents. This method
is also known as multi-cast.

In a multi-agent system this type of communication may occur when an agent have a list of
agents to whom may send or request information.

7.1.1.3. Broadcast message exchange

The Broadcast method consists of a non directed dispatch of messages. All the community
members will receive the message that has been sent. Typically there is no assurance though
that all the potential receivers will get the broadcasted message.

Agent-based Systems

37

In multi-agent systems the broadcasted messages are used when an agent doesn’t know to
whom exactly the message should be sent or when it wants to notify ll the community about
something.

7.1.1.4. Blackboard

The Blackboard concept is rather different from the conventional message exchange. In this
case, instead of using message queues or sockets, it used an area of shared memory. It was
one of the first mechanisms to support multi-agent systems.

Every agent in a multi-agent system has access to this shared memory area and communicate
through it. The Blackboard is the place where agents post their requests and replies. Any agent
may accept requests that have been announced there or freely use the answers given or any
information posted.

The implementation of this mechanism will be easier when all the agents are in the same
computational resource because they can directly access the same memory area but is more
complex when the various agents are spread over several machines. In this case it is common
to use a server that encapsulates the Blackboard mechanism.

Fig. 9 - A typical blackboard architecture [Engelmore, 1988]

The exact mechanism, as depicted in the Figure 9, can be described as being composed of:

• a set of independent entities called knowledge sources (KS) that have specialized
knowledge;

• a shared data structure, called blackboard, that the knowledge sources use to
communicate.

The best way to describe the way these systems work is by using the following metaphor
[Engelmore, 1988]:

“A group of specialists are seated in a room with a large blackboard. The
specialists are working as a team to brainstorm a solution to a problem, using the

Agent-based Systems

38

blackboard as the workplace for cooperatively developing the solution. The
session begins when the problem specifications are written onto the blackboard.
The specialists all watch the blackboard, looking for an opportunity to apply their
expertise to the developing solution. When someone writes something on the
blackboard that allows another specialist to apply her expertise, she records her
contribution on the blackboard, hopefully enabling other specialists to then apply
their expertise. This process of adding contributions to the blackboard continues
until the problem has been solved.”

In a similar fashion, knowledge sources will be able to read and write in the central data
structure. The problem solving process will take place with every KS monitoring the
blackboard and presenting its contributions whenever finds a solution to the sub-problems that
have been posted there.

2. Synchronism

There are two types of communication in what concerns the wait for a reply: synchronous
and asynchronous communication

2.1. Synchronous communication

Synchronous communication is a message exchange protocol in which the receiver expects
the arrival of a message in a pre-determined moment. The receiver therefore stops its
processing while waits for the arrival of the message but that may happen quickly or take
longer.

This protocol has several shortcomings: while waits, consuming computational resources, the
agent doesn’t produce any useful work. On the other side, we should consider the possibility
that the message it is waiting never arrives (because the the other agent couldn’t deliver the
requested results or because some communication breakdown occurred). If any of this
happens the agent will stay frozen indefinitely.

2.2. Asynchronous communication

In the asynchronous communication the communication and processing abilities are
independent, i.e., the internal processing will not be affected by the message reception so that
when a message arrives the agent will be notified and the message stored. Upon reception, the
messages will be stored in a queue for future processing.

Additionally, the communication system may also detect the message type and fire
automatically the correspondent processing functions.

This mechanism is useful due to the uncertainty of processes because one doesn’t know when
a message will be sent.

3. Pooling

Unfortunately, the reliability of communications is not always as it should be. For whatever
reasons, breakdowns may occur. Therefore multi-agent system must have mechanisms that
give them some capacity to tolerate faults. That’s why the pooling service is used. When an
agent stays inactive for an unforeseen reason, the pooling system will store the messages and

Agent-based Systems

39

other relevant information waiting for the agent as soon as it is recovered. This way we assure
that some recovery capacity is maintained.

4. Forwarding

It is not always possible for an agent to communicate easily with another agent within the
community. In those situations it should be provided a forwarding service that receives the
information the agent wants to send and takes care that it will arrive to the intended recipient.

7.2. Security
The security requirements exist in any system, namely in the Distributed Systems, where
there is no single centralized entity responsible for keeping the consistency, objectivity and
validity of its components’ intentions. These systems are dynamic both in the structural and
the organizational sense, being composed of distributed, autonomous entities but that are
collectively committed to global purposes.

The system’s security level is equal to smaller security level of all the system components.
Therefore, the system’s security must be addressed as a whole, both at communications and at
the information levels.

In a multi-agent community the it may happen that someone may try, using an agent, to
register into the system and access the community without permission. A first identification
validation could be made with username and password as in any conventional system. To
protect the flow of information from prying eyes a secure encryption standard can be used.

7.2.1. Names services

As a Multi-Agent System is composed of distributed and autonomous entities, the agents’
heterogeneity and different goals may threaten the system consistency and objectivity. The
system is highly dependent on each entity’s intentions, its social behaviors and the way it
abides by a basic set of protocols.

From the communications standpoint it will be necessary that, prior to any socialization, an
entity is subject to a basic verification process, forcing the agent registration, my means of
username/password validation. Each agent will supply its identification to the names service
that stores and verifies the agents data. Only after this process the agent will be granted
permission to participate in the agents community.

7.2.2. Message encryption service

The information circulating in the network is sometimes critical, be it classified information ,
credit card data, transactions or passwords. The message encryption service increases the
security level of the information exchange between agents in a multi-agent system.

7.2.3. Permissions service

The fact that an agent is part of a multi-agent community doesn’t confer automatically the
rights to do access all kind of information or resources. In fact, the agent may be restricted its
access to certain types of information, the use of certain resources and the requests of certain
services.

Agent-based Systems

40

The permission service will define “who has access to what”. It is common to divide the
agents in groups and grant a specific set of rights to each group, like operating systems do
with their users.

7.3. Information or Directory services
The Information or Directory service informs an agent about which other agents are capable
of performing a certain task and how these agents may be contacted.

This information could exist in the agent itself but this solution would compromise the
dynamic character and the robustness of the system. If a new agent, with a certain ability, is
added to the multi-agent system, it is enough that it registers itself in the Directory service in
order that this information is available for every agent already belonging to the community.

It is possible to draw some analogy between the Directory service and the phone companies’
Yellow Pages, the YP (Yellow Pages) service offered by some computational and operating
systems, the NIS (Network Information Service), the NetBI or X.500.

The Information or Directory service can assume one of these two forms:

• Facilitator - it is responsible for the publishing and distributing information about the
services or tasks that each agent is capable to perform as well as its contacts.

• Broker (Discovery) - will search, when requested, for some particular information,
using other information services or questioning other agents about their capabilities.

7.4. Conversations
A conversation is an ordered set, not necessarily sequential, of messages transmitted between
two or more agents, that are mutually understood by the intervening entities. The conversation
systematizes and defines the occurrences and the types of messages in such a way that, in a
certain moment of the conversation, the set of possible messages is limited, mutually
understood and correctly used.

The type of conversations can go from a simple exchange of control numeric values to
complex negotiations, with uncertain outcomes and involving multiple interactions and
intervening entities. The actual needs of current systems lay somewhere between those two
extremes.

Conversation requires control and monitoring. Some of the mechanisms that are used will be
briefly referred in the next sections.

7.4.1. Time-out mechanism

An agent cannot wait indefinitely for an answer from another agent. The time that one agent
should wait for an answer is called timeout. This timeout is not fixed and should depend on
the conversation state and on the intervening agents. This is the reason why this issue was not
considered in the communications component.

Agent-based Systems

41

7.4.2. Information Management

The conversation related information must be adequately stored. The conversation state, the
intervening agents and previous messages data are usual elements in any conversation.
Therefore, it makes sense that this data is managed by the specific conversation process and
not by the application itself.

7.4.3. Synchronization

The conversation synchronization consists of the set of control activities that manage the time
and order of messages processing.

A certain conversation is composed by a set of ordered messages but if a particular order is
not followed it shouldn’t be automatically a cause for fatal error and reason for the
conversation to be aborted. Situations may occur in which the messages arrival occurs before
the moment expected by the conversation. Nevertheless, if those messages are stored and
made available at the correct moment, the conversation will be able to proceed without
problems.

Agent-based Systems

42

8. Negotiation between agents
As in the negotiation between humans, the agents must be able to communicate between
themselves and to exhibit some social abilities in order to establish a negotiation.

In order to control the development of the negotiation process between agents some
negotiation protocols were defined. The more common types of negotiation are:

• 1 potential contracting entity to 1 potential contractor;

• 1 potential contracting entity to N potential contractors;

• N potential contracting entities to 1 potential contractor;

• N potential contracting entities to N potential contractors.

We will discuss the three first types of negotiation because the last one can be obtained by the
product of the second and third cases.

8.1. One to one negotiation
We can see the Client-Server relationship as a particular case of this type of negotiation. The
difference lays on the fact that the potential contractor, unlike the server, may refuse to
perform the required tasks.

The protocol starts with an announcement (Figure 10) made by the contracting party (Ag) to
the potential contractor (Ag1).

Fig. 10 – Announcement from Ag to Ag1

The agent Ag1 will then analyze Ag’s announcement and will answer with a proposal or
saying that it cannot execute the required task (Figure 11).

Fig. 11 – Ag1’s answer to Ag

Agent-based Systems

43

Ag Ag1
Announcement

Ag Ag1
Proposal / Impossibility

In the last case, Ag knows that cannot count on Ag1 to perform the desired task. Ag should be
sufficiently autonomous to know how to deal with the situation, avoiding an impasse. If Ag
receives a proposal from Ag1, it will analyze it and decide whether to accept it or reject it
(Figure 12), depending on the proposal’s contents.

Fig. 12 – Finalising the negotiation between Ag and Ag1

The process can grow more complex and demand more interaction between Ag and Ag1. Ag
may, for instance, set a maximum price or a delivery date and Ag1 may try to convince Ag to
accept a proposal that fits the required price but not the delivery date, or the opposite.

Agents should have fault tolerance mechanisms, namely in what concerns communications,
because a message may not reach its intended destiny for a number of reasons. Again the
issue of agent’s autonomy appears as been a key issue.

8.2. One to N negotiation
Several negotiation protocols of one contracting entity to N potential contractors have been
proposed, usually based on the “Contract Net Protocol” [Davis-1983].

Let’s consider an agent Ag willing to get a certain task done. This task may be performed by
any of the potential contractors, the agents Ag1, Ag2 and Ag3.

The process begins with the announcement made by Ag and directed to Ag1, Ag2 and Ag3
(Figure 13).

Fig. 13 – Announcement from Ag to Ag1, Ag2 and Ag3

Agent-based Systems

44

Ag Ag1
Announcement

Ag2

Ag3

AnnouncementAnnouncem
ent

In order to make the announcement, the agent Ag must know who is able to perform a certain
task (meta-knowledge about other agents’ abilities). In alternative, it could get this
information from a specialized agent, to issue a broadcast or to use a shared memory area to
post the announcements (blackboard).

The agents Ag1, Ag2 and Ag3 will then analyze the announcement and react, sending
proposals, declaring themselves unable to satisfy the request or simply not answering (Figure
14).

Fig. 14 – Ag1, Ag2 and Ag3 answer Ag

Ag analyses the received proposals and selects the best one among the ones that fit the
requirements, informing the corresponding agent about its acceptance. It may eventually
inform the agents whose proposals were turned down about its rejection (Figure 15).

Fig. 15 – End of the negotiation process

Agent-based Systems

45

Ag Ag1
Impossibility/rejection

Ag2

Ag3

Impossibility/rejection

Im
possibility/rejection

Ag Ag1
Acceptance / Rejection

Ag2

Ag3

Acceptance / Rejection

Acceptance / Rejection

When the impossibility or rejection messages are not mandatory, the protocol should take this
into consideration, otherwise the agents risk waiting for an event that will not ever occur.
Even when these messages are obligatory it can happen that they don’t arrive due to failure in
the communications process. Therefore, the agents must be prepared to be tolerant to this kind
of faults (the timeout mechanism can be a solution).

Let’s consider the following problem:

Agent Ag wants 3 tasks (T1, T2 and T3) to be performed. These tasks have the following
restrictions:

T1 must precede T2
T2 must precede T3
T3 must be concluded before the instant 10 (10 time units)

The tasks may be performed by the following agents:

T1 may be executed by Ag1 or Ag3, its duration being 2 time units
T2 may be executed by Ag2 or Ag3, its duration being 2 time units
T3 may be executed by Ag3 or Ag4, its duration being 3 time units

These agents’ agendas are the following (in time unit intervals (t_init,t_end))):

Ag1: [(1,2)]
Ag2: [(3,4)]
Ag3: [(1,3),(5,8)]
Ag4: [(4,5),(9,10)]

A possible negotiation sequence should be devised in order that Ag may be able to schedule
the required tasks with the agents that are fit to perform them.

The problem above requires several negotiations of 1 to N (3 in this case), meaning a
negotiation for each task (T1, T2 and T3). It should be noticed that those negotiations are
inter-dependent. The agent Ag3, for instance, may execute the T1 and T2 tasks. It may happen
that this agent will be awarded the execution of both tasks. Therefore, the negotiation of T2
may be influenced by the negotiation of T1. This fact may bring some problems to the
simultaneous negotiation of tasks.

In order to solve the problem let’s assume that we have 3 protocols of 1 to N, associated with
T1, T2 and T3, to deal with. We will only start negotiating T2 when T1 is finished. Likewise,
the T3 negotiation will only start when T2’s is completed.

In the negotiation of T1, the agent Ag contacts the potential contractors, Ag1 and Ag3, asking
them to execute the task T1. On the other hand, let us suppose that Ag knows that those tasks
require a total of 7 time units to be performed (2 for T1, 2 for T2 and 3 for T3). Therefore, the
deadline for concluding the T1 task will be the instant 5 (10 - 2 - 3), because 10 time units is
the alloted time period to execute the whole set of tasks and the remaining tasks (T2 and T3)
take 2 and 3 time units to perform, respectively.

Agent-based Systems

46

It may happen, though, that Ag doesn’t know the exact durations of these tasks. It is actually
more natural that this information is known only to the contractor agents. Moreover, the
duration of certain tasks may not be known beforehand, forcing the agents to work with
estimative values.

Let us suppose that, according to their agendas, Ag1 and Ag3 both answer to Ag saying that
they can execute the task T1. The possible intervals for Ag1 and Ag3 are:

(2,4) for Ag1

(3,5) for Ag3.

Ag has now to choose between them and it will probably choose Ag1 because this agent can
start sooner. However, the choice could be different if it followed a JIT (Just in Time)
methodology or if it was dealing with a cost sensitive application and Ag1 had higher costs.

Now Ag starts the negotiation the task T2. The available timeframe is 7 (10 - 3) and the
potential contractors are Ag2 and Ag3. No need obviously to start T2 before the instant 4
which corresponds to the end of T1. Let us also admit that there are no minimal waiting
periods between T1 completion and the start of T2. The opportunity window for the execution
of T2 is then the interval (4,7).

According to their agendas, only Ag2 can execute T2 during the following interval:

(4,6) for Ag2.

Finally, the T3 negotiation starts. The opportunity window for the execution of this task lays
between 6 (the end of T2) and 10 (final deadline). The potential contractors are Ag3 and Ag4.

The sole agent capable of performing this task with the imposed restrictions is Ag4 and the
interval will be:

(6,9) for Ag4.

The negotiation process ends successfully. It could happen though that in order to fulfill all
the time limits the process would need to backtrack, that is, to go back and redo the first steps
of the negotiation trying to get a different solution. It could even occur that no solution could
be found for the problem in such a way that all the restrictions were met. In this case, we
could try and relax some of the restrictions.

8.3. N to One negotiation
It is not really a special type of negotiation because it is the result of several contract
processes like the previous one but now centered on the contractor point of view. Now, the
potential contractor has do deal simultaneously with the negotiation of several contracts.

Let us consider that three agents (Ag1, Ag2 e Ag3) want to close a contract independently
with Ag. Therefore, Ag receives 3 different announcements (Figure 16).

Agent-based Systems

47

Fig. 16 – Announcements from Ag1, Ag2 e Ag3 to Ag

The question that the potential contractor (Ag) must address is how it can commit itself with
each of the proposals it sends if it is not sure about any of them being accepted by the
receivers. In fact, Ag1, Ag2 and Ag3 may reject its proposals or even being at the same time
in a negotiation process with other agents. Let us illustrate the problem with an example:

Suppose that Ag receives

An announcement from Ag1 to perform the task T1 with a 3 time units duration and to
be finished by instant 4

An announcement from Ag2 to perform the task T2 with a 4 time units duration and to
be finished by instant 6

An announcement from Ag3 to perform the task T3 with a 2 time units duration and to
be finished by instant 5

Ag agenda is completely free.

Which proposals should Ag send to agents Ag1, Ag2 and Ag3?

Ag will be able to individually satisfy any of the three request (T1, T2 or T3). A brief analysis
may find that he also could take care of the pairs T1-T3 or T3-T2. We can conclude then that
the agent will be able in any case to execute T3 and will then have to choose between T1 and
T2. Let us suppose that it chooses T2 because it is longer to execute and therefore potentially
more rewarding. Ag will then answer Ag2 and Ag3 with accepting proposals and rejects Ag1
task. It may happen, though, that Ag2 and Ag3 choose another agent to perform T2 and T3
and therefore Ag ends up loosing everything. It could even happen that Ag1 doesn’t have any
alternative proposal for T1. We could say then that Ag had made unhappy choices regarding
these announcements. Of course, if Ag had been less “honest” and accepted all three
possibilities, hoping to get at least one, it could be in trouble if by chance everybody chose its
proposals.

We are in the presence of a Indecision Problem, that may be stated as follows: When an agent
is subject to the simultaneous negotiation of several contracts it will never know if its
proposals will be accepted or turned down, and that will affect its behavior.

Agent-based Systems

48

An optimist and reliable agent understands that when it sends a proposal it may be accepted
and, therefore, in subsequent negotiations it will consider as not available everything that has
been object of a prior proposal (time, goods or services). Such an agent will tend not to be
available for other negotiations. However, it risks that if its proposals are refused, it will have
lost additional opportunities to close a deal because it was not available for other negotiations.

A pessimist and unreliable agent knows that there is no assurance that its proposals will be
accepted and therefore in future negotiations considers that what has been included in prior
proposals is still available, due to the fact that those proposals have not yet been accepted.
This agent will make a better use of the opportunities but risks the discredit because the other
agents ay start considering its proposals as not credible (if they are able to learn from
experience...).

Some of the alternatives solutions for dealing with this problem are:

• To make the negotiations one by one until the end in such a way that only after
receiving an acceptance or a rejection one starts negotiating the next proposal (will it
be realistic under normal conditions?);

• To include additional steps in the negotiation protocol indicating that the proposals
need to be reconfirmed by the contractor after being selected by the contracting party;

• To evaluate the relative importance of the potential contracts taking into account who
the customer (contracting entity) is, and using heuristics;

• To gauge the impact of the non-fulfillment of contracts (penalties);

• To try and subcontract other agents for the overload;

• To try and renegotiate contracts already committed.

In order to be able to deal with this type of problems an agent must be provided with enough
“intelligence” and knowledge, specially when the agent is in the contractor position.

There are several characteristics that can be associated with an agent’s character. You can, for
instance, describe an agent as reliable or unreliable, optimistic or pessimistic.

Finally, one should note a characteristic like the learning ability is very important in order that
the potential contractors don’t find themselves repeatedly in a loosing situation.

8.4. Renegotiation
The renegotiation may be seen as a new negotiation process that is started because a
previously established negotiation has been broken. Imagine that in the example given on
section 8.2 (a 1 to N negotiation) the agent Ag selects Ag1 as a contractor and therefore sends
Ag2 and Ag3 rejection messages. If Ag1, the awarded contractor, fails to deliver, when Ag
becomes aware of the fact sends new announcements and repeats the previously described
negotiation process, this time with agents Ag2 and Ag3 only.

Agent-based Systems

49

Agent-based Systems

50

9. Auctions
This is a very common type of negotiation, frequently organized for selling art objects and
often reaching values much higher than initially foreseen. Auctions can be used for selling
individual items, like paintings, or sets of itms like Treasure Bonds.

Auctions are quite appropriate in situations where the goods don’t have a fixed or pre-
determined market value or, in other words, when the seller is not sure about what price to
ask. Auctions are specially useful in countries that are beginning to adopt a market economy
because they make possible the evaluation of the goods’ value when no prior estimation
exists.

It is more flexible to sell something in an auction than to fix previously the selling price and
can be quicker and less costly than negotiating a price. When one negotiates a price, each
proposal or counter-proposal is considered separately but, in an auction, the competitive
proposals are made almost simultaneously.

An auction is a method for assets’ attribution, a method intrinsically based on competition. It
is the purest of the markets: a seller wants to get the biggest profit and the seller wants to pay
the lowest price. An auction offers a simple way of establishing the price based on the market.
It is an efficient mechanism in the sense that an auction usually assures that the resources are
alloted to the one that values them the most and that the sellers receive the value given by the
item’s evaluation.

A particular characteristic of this method is that the price is not defined by the sellers but by
the bidders. However it is the seller who defines the rules when he chooses the type of auction
to be used. Another peculiarity of the auctions is that it is not usually the auctioneer that keeps
the goods but instead acts as an agent for someone that wants to buy them.

Frequently, the buyers know more about the product’s value than the sellers themselves. The
sellers quite often don’t suggest a price because they fear that their ignorance may cost them
dearly, and promote an auction instead, asa way of gathering price information that otherwise
would be tough to get.

There are several ways of classifying auctions. There are open auctions and auctions with
secret proposals. There are auctions where the price increases with every bidding and others
in which the price decreases at regular intervals. There are unilateral and bilateral auctions. In
the unilateral auctions only the buyers can make proposals whereas in the bilateral auctions
both sellers and buyers are able to make them. The unilateral auctions can also be based on
offers made by sellers. This type tend to favor the silent entities, like buyers waiting for the
proposals to go below the competitive equilibrium price or sellers waiting for the offers to go
above it.

An important remark to be made deals with the kind of motivations to participate in auctions.
The obvious one is the acquisition of goods for personal use or consumption. In this case the
object to be auctioned has a value which is specific to each bidder. A different motivation is to
acquire goods for resale or commercial use. In this case, the proposal’s value depends not
only on the private evaluation but also on future evaluation of the next buyers. Each bidder

Agent-based Systems

51

tries to estimate the final price of the product. The people’s behavior will then vary according
to the type of motivation.

William Vickrey [Agorics - URL] established a basic taxonomy for auctions based on the way
prices are quoted and the bids are dealt with. Four types of standard unilateral auctions were
defined: the English Auction, the Dutch auction, the First price sealed-bid auction, and the
Second price sealed-bid auction. The table II shows the basic rules and how the final price is
set in these four auction types.

Auction type Rules Closing Price

English
(open, oral,
ascending)

Seller may set a “reserve” price.
Bidding price increases until there is no more bids.
Bidders can bid several times.

Higher bid value

Dutch Seller announces a high asking price.
Price is going down until some bidder accepts current
price.

Better proposal
value (1st bid)

Sealed-bid first-
price auction

Bidders submit their proposals secretly. The winner pays
the proposed price.

Better proposal
value

Sealed-bid
second-price
auction

Bidders submit their proposals secretly. The winner is the
one that offered the higher price but pays the price offered
by the second best proposal.

Va l u e o f t h e
s e c o n d b e s t
proposal.

Table II – Rules and price setting in auctions

Agents can also use auctions in their negotiations, with seller agents and buyer agents
(bidders). These agents must show intelligence and even cunning in order to participate
successfully in auctions.

Certain newly emergent markets previously controlled by monopolies, like the Electricity
Market, may be implemented using an auction mechanism. In these markets, we will have
producers and buyers of electrical energy. It makes sense that these entities are represented by
agents. In the internet, there are many products or services (travel, for example) that are sold
through auctions and the agents’ presence is more and more evident.

A better description of the several types of auctions can be found in the reference
[Praça-2001] where this section was based.

Agent-based Systems

52

10. Conflicts
Conflicts may occur in a Multi-Agent System as it happens in any conventional society. We
have already described the main types of conflicts:

• Conflicts of goals - agents’ goals are not the same, they may even be contradictory.

• Conflicts of Responsibility or Interests - there are several agents willing to take
responsibility for a certain task or to fulfill the same goal.

• Conflicts of Information or Knowledge - several agents have different views on the
same situation or reality.

The first type of conflicts (of goals) occurs when two or more agents analyze a problem from
different, eventually contradictory, perspectives. Let’s consider the following example:

An informatics department will purchase a certain equipment based on the recommendations
submitted by two different agents: one agent makes the economic evaluation while the other
is responsible for the technical one. The agents receive the suppliers’ proposals, analyze them
and issue a recommendation about the equipment to be bought. Minimum specifications
(CPU, amount of memory, display, disk size, etc) will be defined and a maximum budget will
be estimated.

The agent responsible for the economic evaluation will tend to opt for the computer that,
satisfying the minimum specifications, has the lower price. The agent that takes care of the
technical evaluation will prefer the computer with better characteristics provided that its price
isn’t higher than the maximum budget. A conflict arises because its goals are different
(economic versus technical). The agents performance could obviously benefit if they could
argue about the different solutions found and could establish a dialogue with potential
suppliers, trying to convince them to decrease prices or offer better characteristics. Agents
should be able to reach compromises in order to assure that at least the most important part of
their goals is met.

The fact that the agents’ goals are different doesn’t necessarily imply that they are
contradictory. However, if we had choose between different mutually exclusive policies to be
applied , the situation would be diverse. Let us consider, for instance, an airplane controlled
autonomously. Its mission is to make vigilance over a certain area. It starts starts from an
certain airport and its work is carried out close to another airport. Suppose that the weather in
the area it is investigating is getting worse and a choice has to be made: to return to the airport
from where it lifted off or to go on and try to land on the other airport, with the risk of running
out of fuel, because it goes beyond the point of no-return. If we consider two agents
responsible for the control of the airplane, one whose goal is to get the job done s quickly as
possible and the other more concerned with security issues, a conflictual situation will be
reached, because their goals are, in the current situation, contradictory. Only one of the goals
may be pursued. Therefore, the system must have a priorities scheme that chooses the goal of
the agent with the higher priority whenever the consensus is not achievable.

In the responsibility or interests conflicts, the agents’ individual goals can even be the same
but, as they are competing for a single and non-divisible asset, only one of the gas can be
satisfied. A typical example is the bid for a single product in an auction. The competing agents

Agent-based Systems

53

have a similar goal but will never be able to cooperate because only one can win. A similar
situation occurs when several companies sell the same range of products. In order to deal with
this situation, the agents must be able to foresee the actions of their competitors or even spy
on them (an agent could, for instance, check other agents’ prices before defining their own) .

Finally, we have the conflicts that arise due to differences of data, information and
knowledge. Several agents can have a different view of the same reality. One example is the
object identification systems VISION and LASER, described on Section 6.2, that could
consider that in a certain position existed two different objects. This problem can be solved by
attributing different levels of credibility to the different agents, in what concerns the
information they supply in a given situation. Other possibility will be to try merging the data/
information/knowledge from the various agents looking into the same reality in order to try
and use part of the results produced by each agent. It will be necessary to define the data/
information/knowledge items to be treated and check whether all the agents supply them. If
only one agent supplies one certain data item we will be forced to accept it as true. If several
agents agree in a certain item then its credibility will increase. If there are contradictory itms
we will have to check the credibility of each of the agents supplying it. We can further
elaborate the process if we add to the agent credibility rating a measure of certainty in its
conclusions. An agent we believe in may be only 60% sure of a certain data item being true
while another agent in which we believe less may be 9% sure about the same data item.

Agent-based Systems

54

11. Interaction between Agents
11.1. Ontologies
In order that two agents are able to communicate and understand each other they need to be
able to use a common language or, at least, to use languages that are mutually translatable.
But this is not enough for any two agents to understand each other. They also need to share a
certain knowledge organization or, in different words, they need to share an Ontology.

An Ontology specifies a representation vocabulary for a specific domain from which the
words used by the agents will be chosen. But the Ontology is more than a vocabulary
containing concepts because it treats these concepts at a higher level, defining classes,
relationships and functions.

The term Ontology has caused some controversy in the Artificial Intelligence field and other
areas but it has been used since long time ago in Philosophy to describe the “theme of the
existence”, the nature of being. Sometimes Ontology is confused with Epistemology which is
the theory of knowledge.

Tom Gruber defines Ontology within the scope of knowledge sharing as being a
“specification of a conceptualization”. In this sense, an Ontology is seen as a specification of
the concepts and relationships between them that an agent or an agents community may use in
their communication, as it happens in the formal specification of a computational program
[Gruber-1993].

Ontologies have become increasingly important in the scientific communities related to
Knowledge Management, Intelligent Agents and Multi-Agent Systems. In Knowledge
Management, the importance of the ontologies comes from the need to share and reuse
knowledge within an organization. In the area of Intelligent Agents and Multi-Agent Systems,
Ontologies are key to allow the agents to establish a common platform on which to base the
knowledge interchange. Without it, each agent risk interpreting differently the same terms. In
the limit, we will produce Idealects with agents emphasizing strictly private perspectives on
concepts that should be universal.

Therefore, it is important to define ontological commitments between agents. An ontological
commitment is an agreement between a set of agents in order to use a common vocabulary in
a way that is consistent with the theory specified by the ontology.

An Ontology can be represented by a Knowledge Base hierarchically structured in classes.
However, this kind of structure is not mandatory.

There are several criteria that should be observed when designing a new ontology:

• Clarity - an ontology should describe in an efficient manner the meaning of the terms
that are being defined. The definitions should be objective. Whenever possible the
definitions should be complete (by means on necessary and sufficient conditions)
instead of partial;

• Coherence - if a sentence is inferred from the axioms on an ontology and contradicts
a definition present in that ontology then this ontology is incoherent;

Agent-based Systems

55

• Extensibility - it should be possible to define new terms for special uses based on the
vocabulary without altering the existent definitions;

• Minimal codification - the conceptualization should be done at the knowledge level,
without specific coding at the symbols level. It should be noted that the agents may
be implemented with different styles or representation systems;

• Minimum need of logic commitments - due to the fact that ontological commitments
are based on the consistent use of the vocabulary, these commitments may be
minimized by using the weaker theory (the one that fits all theories) and defining only
the themes that are key to the communication of consistent knowledge according to
that theory.

Ontolingua is a system that allows for the definition of ontologies that are portable between
several representation systems. Other alternatives are KADS, Conceptual Graphs, IDEF5 e
BSDM.

11.2. Knowledge Exchange Formats
KIF (Knowledge Interchange Format) defines a format to be used in the knowledge exchange
between agents. It has a declarative semantics, the meaning of expressions can be understood
without resorting to an interpreter capable of manipulating those expressions.

KIF is logically understandable. With it, one can express realities using first order logic. KIF
may be seen as a prefix version of 1st order predicate calculus, with several extensions to
increase its expressivity.

KIF allows to represent meta-knowledge.

Examples of KIF messages’ contents may be:

• Notification: (tell (> 5 3))

• Request: (perform (print “Hello!” t)

• Answer: (reply available)

• Question: (ask-if (> (profit product_1) (profit product_2)))

• Subscription: (subscribe (coordinates ?x ?y ?z))

The next example shows how to express the idea that a certain worker, belonging to a certain
department and identified by his fiscal number, has a specified salary.

(salary 123456789 accounting 1500)
(salary 132547698 purchasing 1200)
(salary 143276598 marketing 1800)

It is also possible to establish comparisons and to make calculations. For instance, to compare
the area of two tracts of land, we can use:

(> (* (width t1) (length t1)) (* (width t2) (length t2)))

We can express that the even power of a real number is greater than zero by stating that:

Agent-based Systems

56

(=> (and (real-number ?x) (even-number ?n)) (> (expt ?x ?n) 0))

The use of the operator ‘ and the commas allow the agent to say that it is interested in
receiving the 3 values associated with the salary relationship:

(interested joe ‘ (salary ,?x ,?y ,?z))

KIF can also be used to describe agents’ programs or scripts. Due to the prefix nature of KIF’s
syntax, those programs look like Lisp or Scheme programs, as can be seen by the following
code fragment:

(progn (fresh-line t) (print “Hello”) (fresh-line t))

11.1. Knowledge Query and Manipulation Languages
KQML (Knowledge Query and Manipulation Language) is a protocol for the exchange of
information and knowledge between agents. It is a declarative language. It was proposed by a
project called Knowledge-Sharing Effort of the US Defense Advanced Research Projects
Agency in the late 80’s [Labrou-1988].

The KQML language has three layers:

• Content: an expression in an agreed format like, for instance, KIF (Knowledge
Interchange Format);

• Message: expresses the communication logic, stating the language used to convey the
content, the type of content expression;

• Communication: defines how the communication will be established, says who is the
sender and the receiver, the type of communication and other related details.

KQML is indifferent to the content and format of the information and knowledge it handles. It
ignores the message content except to determine where it ends.

The KQML language is composed of several reserved primitives (“performatives”). Some
examples of these basic primitives are:

• Informative: tell, achieve, untell, unachieved;

• Requests: perform;

• Questions: ask-if, ask-one, ask-all, evaluate;

• Answers: reply, sorry;

• Capability definition: subscribe, monitor, advertise, unsubscribe;

• Communications: forward, register, unregister, broadcast, route.

A complete KQML expression includes, besides the speech primitive, a list of paits
attribute-value with elements such as:

:language <language>

:content <content>

Agent-based Systems

57

:ontology <ontology>

:from <agent_origin>

:to <agent_destination>

It is possible to insert pre-conditions, post-conditions and final conditions into a ialogue
between agents using KQML.

The following example shows how agent A can inform agent B that it believes in X, using
pre-conditions (Pre(A) e Pre(B)), post-conditions (Post(A) e Post(B)) and final conditions
(Completion):

tell (A, B, X)

Pre(A): BEL(A,X) ∧ KNOW(A, WANT(B, KNOW(B,S)))

Pre(B): INT(B,KNOW(B,S))

Post(A): KNOW(A, KNOW(B,BEL(A,X)))

Post(B): KNOW(B,BEL(A,X))

Completion: KNOW(B, BEL(A,X))

 S can be BEL(B,X) or ¬BEL(B,X)).

Let’s have a few more examples of dialogues between agents A and B. In the first example A
tells B that 3 is greater than 2:

 A to B: (tell (> 3 2))

In the second dialogue A asks B to write “Hello” and B confirms that it did it:

 A to B: (perform (print “Hello!” t))

 B to A: (reply done)

In the third dialogue A questions B whether p1 product’s cost is greater than p2’s and B
answers affirmatively:

 A to B: (ask-if (> (cost p1) (cost p2)))

 B to A: (reply true)

At last, agent A requests agent B to inform him about previous day minimum and maximum
temperatures in several cities, as soon as they are available:

 A to B: (subscribe (temperature ?a ?b ?c))

 B to A: (tell (temperature porto 12 20))

 B to A: (tell (temperature lisboa 13 23))

 B to A: (tell (temperature faro 15 23))

 A to B: (unsubscribe (temperature ?a ?b ?c))

Agent-based Systems

58

11.4. Languages for communication between agents
The standardization of communication languages makes software interoperability easier
because it frees the interface from the implementation and translation tasks. Standardization is
becoming common in many areas like SMTP in email, GIF and JPEG graphical formats and
Postscript in text formating programs and printers.

An agent communication language (ACL) gives the agents the means to exchange
information and knowledge.

The scientific community of Intelligent Agents and Multi-Agent Systems approach the
problem from two different perspectives: a procedural approach or a declarative one.

The procedural approach is based on the assumption that the communication between agents
can be modeled by procedural directives. The script languages (like TCL, AppleScript or
Telescript) are based on that approach, at the same time simple and powerful. It allows the
transmission of individual commands or full programs. The disadvantages are typical ones for
all procedural approaches. Sometimes, information about the receiver is needed that is not
available at the sender side. Moreover, procedures are unidirectional when most of the
information agents need to share must flow in both senses. Beside that, scripts are difficult to
merge. This is not a problem in one to one conversations but when we have one agent talking
with several others it may find difficult merging several scripts.

The conception of language used in the declarative approach considers that communication is
better modeled by the exchange of declarations (definitions, assumptions and so on). The
declarative language should be sufficiently expressive but compact, at the same time.

ACLs result from the work by KSE (Knowledge Sharing Effort) group from DARPA-DoD
(Defense Advanced Research Projects Agency of the US Department of Defense) in the
beginning of the 90’s, using a declarative approach as its basis.

Also during this period, France Telecom developed Arcol, an ACL containing a group of
primitives smaller than the one later defined in KQML. Arcol primitives, like KQML’s are
assertive or directive but, unlike them, primitives can be composed of others. Arcol has a
formal syntax that assumes that agents have beliefs and intentions and that may represent their
uncertainties about facts.

A widely known agent communication language is FIPA ACL (FIPA – Foundation for
Intelligent Physical Agents – http://www.fipa.org/) that was strongly based on the Arcol
model and semantics.

An ACL can be better described as being composed of three parts: the vocabulary, its “internal
language” (KIF) and its “external language” (KQML). An ACL message is a KQML
expression in which the arguments are terms or “phrases” in KIF composed with words
chosen from an ACL vocabulary.

But what separates an ACL from technologies like RPC (Remote Procedure Call), RMI
(Remote Method Invocation) or CORBA and object request brokers?

An ACL should:

Agent-based Systems

59

http://www.fipa.org
http://www.fipa.org

• handle propositions, rules and actions instead of objects, implying that ACL worries
about aspects related to semantics and meaning.

• describe the desired states in a declarative language instead of procedures or methods.

Agents not only exchange messages but they also establish conversations like, for instance, in
a negotiation process. In ACLs it is common to refer “conversation acts” instead of
exchanging messages. They can also be based in the BDI model (beliefs, desires, intentions).

Conversation acts can be divided in several categories. Some examples of those categories
are:

• Assertive: the door is closed;

• Directive: to close the door;

• Questions: Is the door locked?;

• Commitments: I will close the door;

• Permissive: He can close the door;

• Prohibitive: He can’t close the door;

• Declarative: This is the way out door;

• Expressive: I would like this one to be the way out door.

The dialogue can be based on propositional attitudes. A propositional attitude is a relationship
between three parts (the agent, the proposition content and an element of a finite set of
propositional attitudes). Let’s consider this example:

Agent : Ag

Contents: interest rate decreasing

Set of propositional attitudes: {believes, wishes, imposes, recommends, avoids}

One propositional attitude could be:

 <Ag, believes, interest_rate_decreasing >

This indicates that agent Ag believes that some interest rate decreasing will occur.

Agent-based Systems

60

13 – Aplicações de Agentes e Sistemas Multi-Agente

Nesta secção iremos referir algumas áreas e tipos de problemas tratados pelos Agentes e
Sistemas Multi-Agente.

13.1 – Comércio Electrónico

O Jango (http://www.jango.com/) da Excite o Bargainfinder (http://bf.cstar.ac.com) da
Andersen Consulting são exemplos de agentes que pesquisam na Internet à procura do
melhor preço para um dado produto. Também podemos considerar agentes que operam em
negócios entre empresas, B2B, tais como o FairMarket e no mercado de derivados, como o
ETrade e o OptiMark.

O Michigan Internet AuctionBot [Wurman-1998] é um projecto do Laboratório de
Inteligência Artificial da Universidade de Michigan, nos Estados Unidos da América. É visto
como um serviço de recolha de informação, que recolhe ofertas, determina os preços
resultantes (usando regras próprias de leilões) e notifica os participantes. Não suporta
transações de nenhum tipo específico, contudo o AuctionBot dispõe de uma API que está
disponível para uso.

O Fishermarket [Rodrígues-1998] é outra abordagem de recriação de leilões on-line através
da tecnologia dos agentes. Originalmente o Fishermarket suportava o modelo holandês de
leilões, mas agora já suporta os outros modelos mais conhecidos (inglês, primeira e segunda
propostas).

Agent-based Systems

61

http://www.jango.com/
http://www.jango.com/
http://bf.cstar.ac.com/
http://bf.cstar.ac.com/

O MAGMA [Collins-1998], posteriormente conhecido como MAGNET, foi desenvolvido na
Universidade de Minnesota e permite o estabelecimento de negociações entre agentes.

O KASBAH é um sistema da AmEC Initiative [Chavez-1996] ligada ao Massachusetts
Institute of Technology que assenta num leilão duplo. Actualmente o sistema recebe o nome
de MarketMaker.

O Tete-a-Tete [Guttman-1998] é outro projecto do Massachusetts Institute of Technology que
assenta no conceito de comparação de valores, ao invés de comparação de preços. É usada
uma função multi-atributo de modo a representar melhor as necessidades dos utilizadores. A
negociação consiste na resolução distribuída de um problema sujeito à satisfação de
restrições.

O CASBA [Vetter-2000] é um projecto que visa o desenvolvimento de um mercado
electrónico e que segue as seis etapas do modelo CBB (Consumer Buying Behaviour).

A proposta de um modelo para um mercado electrónico que considera o modelo CBB é
também feita em [Viamonte-2000], tendo a particularidade de envolver técnicas de Data
Mining no processo.

O MarketSpace é uma infraestrutura de mercado aberta e baseada em agentes desenvolvida
pela Universidade de Uppsala e pela empresa de telecomunicações sueca Telia. É um mercado
aberto no qual a pesquisa, negociação, contratos e interacção com os utilizadores é feita
recerrendo a agentes.

O ODB (On-Line Dynamic Bargaining) é um sistema que tenta encontrar um compromisso
entre o preço que o vendedor pretende e o preço que o potencial cliente pretende oferecer. O
preço vai variando de modo a que comprador e vendedor assentem num preço comum ao
longo de um processo iterativo no qual o preço do vendedor vai baixando e o do comprador
vai subindo [Lin-2001].

13.2 – Sistemas de Produção

Os sistemas de produção caracterizam-se por um elevado grau de complexidade, sendo
naturalmente distribuídos do ponto de vista físico (várias máquinas, linhas de fabrico,

Agent-based Systems

62

fábricas, etc) e lógico (vários produtos, encomendas e ordens de fabrico a serem tratadas
simultaneamente).

Aqui é costume encontrarmos Sistemas Multi-Agente e haver algum realce para a
componente de negociação.

A cooperação e negociação podem ser vistas a diversos níveis, como por exemplo:
• Entre recursos de uma mesma linha de produção ou de uma mesma célula de fabrico;
• Entre diversas linhas de produção ou células de fabrico;
• Entre a empresa e os seus fornecedores ou clientes (empresa estendida);
• Entre diversas empresas para tirar partido de uma nova oportunidade de negócio

(agilidade, empresa virtual).

O sistema YAMS foi talvez a primeira aplicação dos Sistemas Multi-Agente à área de
sistemas de produção. Utiliza um protocolo de negociação entre agentes baseado no Contract
Net [Parunak-1987].

A General Electric Power Generation utilizou o protocolo Contract Net no processo de
negociação entre 35 estações de trabalho de um sistema job shop. O cliente faz pedidos de
produtos, os agentes decompõem o produto em partes e fazem pedidos aos fornecedores e o
processo repete-se até que a cadeia de fornecimento venha a emergir e os agentes podem
desse modo enviar as suas propostas para os clientes que podem confirmá-las.

O FLAVORS é um sistema instalado num computador com arquitectura paralela que controla
a célula de pintura de uma fábrica de camiões [Morley-1993]. Há 7 estufas de pintura, menos
que as cores possíveis, e a mudança de côr numa estufa leva um tempo considerável de
activação (setup) durante o qual a estufa não pode ser usada, para além de algum desperdício
de tinta. Contudo, se não se efectuarem suficientes trocas de côr haverá encomendas que não
cumprirão os seus prazos de entrega. Estabelece-se um protocolo de negociação que atribui
carrocerias de camião às estufas. Este sistema levou a poupanças consideráveis na empresa.

A LMS (Logistics Management System) é uma empresa de semicondutores do grupo IBM
[Fordyce-1992]. Há uma parte do sistema que usa um protocolo de votação entre 4 agentes
que representam “assessores” com responsabilidade de garantir um objectivo cada:
• completar cada lote tão próximo quanto possível dos prazos de entrega;
• atingir quotas de produção diárias;
• satisfação de pedidos para centros subaproveitados;
• reduzir tempos de setup e incrementar a utilização das máquinas.

Desse modo consegue-se uma função global de avaliação que considere vários critérios.

O ADS da Hitachi é uma arquitectura guiada por dados (data driven) para controlo em tempo
real que suporta Agentes heterogéneos. O ADS foi usado pela Kawasaki Steel. As mensagens
não são dirigidas, mas postas num “data field” que contém um código de conteúdo de modo
que os agentes saibam se lhes são destinadas [Mori-1988].

Agent-based Systems

63

O sistema AARIA foi construído de modo a demonstrar que juntando um grupo de agentes
represerntando habilidades de produção é possível criar uma empresa de produção cujo
desempenho e funcionalidades suplantem a dos sistemas convencionais [Parunak-1997]. O
sistema tem funcionalidades ERP (Enterprise Resouce Planning) e MES (Manufacturing
Execution Planning), nomeadamente na recepção de encomendas, compras, gestão de
inventários, gestão de recursos, gestão de pessoal, contabilidade, escalonamento de
capacidade finita e simulação.

No sistema AARIA existem agentes separados (com igual grau de inteligência e
responsabilidade) que representam Partes (componentes), Recursos e Processos Unitários
(operações), não havendo um controlo centralizado. As partes movem-se de processo unitário
em processo unitário, através de buffers. Cada processo unitário tem como entrada um ou
mais componentes (vindos de um ou mais buffers) e produz como saída um ou mais
componentes (colocando-os num ou mais buffers). Cada agente efectua um escalonamento
local e a política de escalonamento é baseada em janelas temporais dinâmicas, sendo
estabelecida com base num acordo com o cliente e o fornecedor com base numa função que
considera o custo e a data de entrega. Este sistema foi ainda estendido, de modo a cobrir a
cadeia de fornecimento, ligando clientes, fornecedores e instalações fabris distintas.

O HMS Testbed foi desenvolvido na Universidade Católica de Leuven, Bélgica, consistindo
num protótipo de uma estação de montagem holónica. Os recursos físicos do sistema
envolvem várias estações de trabalho para maquinação e montagem, bem como um sistema de
transporte (todos representados por holons). Além desses holons (hardware + software)
existem três outros holons (apenas software) para escalonamento, planeamento e controlo.

Neste trabalho o escalonamento não é elaborado por vários holons, mas por um só, sendo o
objectivo do trabalho analisar a cooperação entre o elemento de controlo e o de
escalonamento. O holon de controlo assume a escala de tarefas enviada pelo holon de
escalonamento como sendo uma proposta, tentando cumprir tal proposta se isso for viável.
Em situações não previstas o holon de controlo decide autonomamente o que fazer, enviando
também um pedido para o holon de escalonamento no sentido de que este gere uma nova
escala [Valckenaers-1994].

13.3 – Controlo de Tráfego

O controlo de trafego aéreo é uma aplicação crítica caracterizada pela complexidade, mas que
tem uma natureza claramente distribuída.

Podemos imaginar Agentes que representem vôos, filas de aviões, pistas, etc. Também
podemos ter Agentes que considerem aspectos como, por exemplo, os factores climatéricos.

O problema é claramente um problema de escalonamento e até podemos fazer uma
comparação com um sistema industrial:

Agent-based Systems

64

Vôo ⇔ Ordem de Fabrico, Encomenda;
Pista ⇔ Máquina;
Tempos entre aviões na pista ⇔ Tempos de Activação (Setup).

O OASIS é um Sistema Multi-Agente implementado usando a plataforma dMARS da AAII e
que foi usado com dados do Aeroporto Internacional de Sidney, na Austrália. O OASIS
mistura agentes que representam funções (coordenador, sequenciador, definidor de
trajectórias, analisador de ventos, interface) com agentes gerados dinamicamente e que
representam os aviões que se apresentam para pousar ou levantar vôo.

Outro exemplo relacionado com o tráfego é a arquitectura ADS da Hitachi, já citada
anteriormente, que já foi usa para o sistema de controlo de tráfego dos comboios Shinkansen
no Japão.

Outro exemplo típico de controlo de tráfego corresponde à coordenação entre semáforos
numa cidade. O sistema DVMT usa uma rede de sensores distribuídos espacialmente para o
controlo de semáforos, obtendo-se vantagens relativamente a um controlo centralizado.

Agent-based Systems

65

13.4 – Filtragem de Informação

As aplicações são muito variadas, indo desde os sistemas de processamento inteligente de
alarmes que se encontram com frequência em sistemas industriais até a filtragem de
informação recebida por um utilizador (por exemplo, via email).

No primeiro caso estamos geralmente na presença de sistemas críticos que se caracterizam
por gerarem uma grande quantidade de informação nas situações mais problemáticas (por
exemplo, no caso de avaria), a maioria dessa informação corresponde a “side-effects” (efeitos
colaterais), pouco importantes para a classificação ou diagnóstico do problema, mas que
acaba por complicar muito a tarefa de um operador que tente compreender em tempo útil
aquilo que ocorreu. Aqui o Agente é visto como um assistente do operador (designado, muitas
vezes como um Sistema de Apoio à Decisão), e em certos casos há a confiança suficiente para
passar o controlo para o Agente de modo a que este possa tratar da resolução do problema.

O Sistema Pericial SPARSE é um caso típico de um sistema inteligente que se encontra em
evolução para um Agente desse tipo [Vale-1997].

Hoje podemos claramente ver o binómio Internet/WWW como a maior fonte de informação
que alguém pode aceder. Muitos dos utilizadores dessa enorme fonte de informação debatem-
se com o problema de serem claramente inundados com informação proveniente de diversos
meios de acesso ou colecção de informação (mensagens recebidas via correio electrónico,
pesquisas usando um browser, etc). É exactamente para facilitar a vida destes utilizadores que
faz todo o sentido o uso de Agentes que efectuem a filtragem de informação.

O MAXIMS é um Agente de filtragem de mensagens de correio electrónico que usa
aprendizagem automática sobre as actividades que o utilizador efectua sobre as mensagens
(apagar, re-enviar, arquivar, responder, etc), efectuando uma aprendizagem por observação do
utilizador. Por exemplo, o sistema pode concluir que o utilizador apaga sempre as mensagens
de outro utilizador específico sem sequer as ler.

O NEWT é um sistema que aconselha um dado utilizador sobre quais os artigos que deve ler.
O sistema baseia-se num processo de exemplos de treino, no qual o utilizador indica artigos
que leria e artigos que não leria. Além disso o utilizador pode dar ordens precisas, do género
“forneça todos os artigos que tenham no título o termo agente”.

13.5 – Agentes de Interface e de Obtenção e Classificação de Informação

A visão de um Agente como elemento de interface com o utilizador que visa facilitar a
execução de tarefas de obtenção e de classificação de informação parece uma das aplicações
com mais potencial dos agentes, nomeadamente porque tais tarefas são, muitas vezes,
desempenhadas de um modo repetitivo e enfadonho.

Agent-based Systems

66

A obtenção de informação (information gathering) distingue-se da filtragem de informação
pelo facto de existir um objectivo mais claro e do Agente providenciar pela procura da
informação requerida, mesmo que para tal tenha que se socorrer de diversas fontes.

Hoje em dia grande parte dos sistemas de obtenção de informação baseiam-se na procura de
palavras-chave que caracterizem os documentos. Relativamente a escrita de documentos na
WWW tem sido reconhecida a necessidade de dar uma maior ênfase ao conteúdo (XML) que
ao aspecto (HTML). Estão em maturação muitas técnicas que permitirão em breve uma
melhor compreensão dos textos com base em técnicas de Língua Natural e Text Mining.

A classificação de informação pode ter como base a observação do comportamento de um
utilizador na execução de uma tarefa de classificação, agindo posteriormente o sistema por
imitação. Contudo, a classificação de informação pode requerer técnicas elaboradas de
reconhecimento de padrões, usuais em reconhecimento de voz e de imagem.

De seguida iremos descrever alguns sistemas de interface com o utilizador para obtenção e
classificação de informação.

O GALAXY é um sistema distribuído e descentralizado com uma interface por voz que
permite o acesso a informação sobre um vasto leque de domínios. Este sistema permite, por
exemplo, que o utilizador possa obter informação sobre voos para um dado destino, saber
quais as condições climatéricas nesse destino, quais os hotéis, como chegar a um dado ponto
da cidade, etc. As fontes de conhecimento podem ser várias e como se imagina a Internet
serve de hospedeira ideal para este tipo de sistemas [Zue-1995].

A ZDL (Zuno Digital Library) é uma biblioteca digital que fornece uma colecção de dados
organizados e serviços para o utilizador fazer uso desses dados. É um sistema multi-agente
que fornece ao utilizador uma vista coerente de conjuntos de dados que podem estar
desorganizados ou incoerentes (como na WWW). Os agentes podem estar classificados nas
seguintes classes:
• Consumidores de informação
• Fornecedores de informação
• Facilitadores que estabelecem a ligação entre os fornecedores e consumidores.

O ARIA é um agente de interface que ajuda o utilizador na tarefa de anotação e acesso a
imagens [Lieberman-2001]. Foi desenvolvido em conjunto pelo Massachusetts Institute of
Technology e pelos laboratórios da KODAK. Não visa a substituição do utilizador, mas a
simplificação e auxílio nas tarefas que este tem de executar.

13.6 – Aplicações Aeroespaciais

Agent-based Systems

67

Em 1998 foi lançado o DS-1 (Deep Space One) a primeira missão do novo programa da
NASA, designado NMP (New Millennium Project). O DS-1 teve como missão a aproximação
ao asteróide McAuliffe, a Marte e ao cometa West-Kohoutek-Ikemura. Esta nave, com apenas
100 quilos, foi a primeira a usar o sistema de propulsão iónica. Para além dessa tecnologia, o
DS-1 testou 12 outras novas tecnologias, incluindo a operação e navegação autónoma baseada
em Inteligência Artificial e tecnologia de agentes. Para o efeito foi desenvolvido o Remote
Agent e o AutoNav. O Remote Agent consiste num conjunto de 3 módulos independentes para
planeamento, execução de planos e monitorização, estando implementado em LISP sobre um
processador RS6000 especial. O AutoNav é o sistema de navegação óptico, usando uma
arquitectura idêntica a de um sistema pericial.

Com base no sucesso alcançado na navegação autónoma com o Remote Agent, a NASA
lançou o CASPER (Continuous Activity Scheduling, Planning Execution, and Replanning)
para o comando de uma missão de 3 sátelites que irá decorrer em 2002. Serão controlados
parâmetros de navegação dos satélites e tomadas decisões sobre quais as imagens a tomar e
quais deverão ser enviadas para terra.

13.7 – Aplicações no Mercado da Energia Eléctrica

As ferramentas utilizadas e decisões tomadas pelas empresas do sector num ambiente
competitivo dependem da estrutura e regras do mercado. Em qualquer tipo de mercado o
objectivo é maximizar o lucro. As regras de operação devem ser previamente definidas por
entidades independentes, para serem completas e “justas”. Justas, neste caso, para não haver
conspiração, para a informação no mercado ser aberta a todos, para o acesso à transmissão e
distribuição não ser discriminatório, e para que os preços sejam apropriados.

Alterar os regulamentos afecta todas as empresas e o seu modo de negociar. Para se manterem
competitivas são necessárias novas ferramentas capazes de ajudar as empresas a transitarem
do ambiente antigo para o novo e competitivo mundo do futuro.

Em [Sheblé-99] é possível encontrar vários métodos e ferramentas capazes de serem úteis na
indústria eléctrica competitiva.

Actualmente os governos encorajam a abertura do mercado, para criar um ambiente
competitivo em que a geração e serviços de suporte são comprados e vendidos face à procura
do mercado. O mercado irá consistir em Produtores (PROD), Distribuidores (DIST),
Transmissores (TRANS), uma unidade central coordenadora para promover o funcionamento
independente do sistema (OIS), e negociadores entre compradores e vendedores (NEG). Os
serviços que suportam a entrega fiável de energia, tendo em conta aspectos como as perdas de
transmissão, potência reactiva, gestão de congestionamentos, entre outros, têm também que

Agent-based Systems

68

ser considerados como parte integrante do sistema (AUX). As diversas entidades referidas
podem ser vistas como agentes (figura 18).

Fig. 18 – Nova Estrutura Organizacional do Mercado da Energia Eléctrica

O Operador Independente do Sistema (OIS) é independente das outras entidades, e embora o
seu papel ainda não esteja completamente definido, é responsável por coordenar os
participantes no mercado de modo a promover o funcionamento fiável do sistema. O OIS
necessita de novos algoritmos de optimização para funcionamento baseado no preço. Em
[Sheblé-99] propõe-se um modelo de negociação de energia, utilizado no desenvolvimento de
ferramentas de análise e simulação para estudar aspectos de implementação de vários
contratos num mercado aberto.

Em [Praça-2001b] é feita a proposta de modelar o mercado da Energia Eléctrica através de um
Sistema Multi-Agente. Tal sistema tem como finalidade efectuar a simulação de tal mercado e
a análise dos vários cenários possíveis é feita com recurso à Teoria de Jogos, os intervenientes
no mercado são vistos como potenciais jogadores e a aplicação de um método similar ao
MINIMAX serve para que se definam quais os cenários que interessa analisar de modo a que
se possa suportar alguém (comprador ou vendedor) na tomada de decisões.

Agent-based Systems

69

Referências Bibliográficas

[Agorics-URL] Agorics, Inc., “Auctions”, 1996, http://www.agorics.com/new.html.

[Alho-1998] K. Alho (1998) A Comparison of CORBA, DCOM and RMI. Helsinki
University of Technology HeCSE Winter School. Janeiro de 1998. http://
wwwseg.cs.hut.fi/~kta/corba-comparison/

[Bratman-1987] M. Bratman, D. Israel, M. Pollack; Toward an architecture for resource-
bounded agents; Technical Report CSLI-87-104; Center of the study of
Language and Information; SRI and Stanford University; 1987

[Breiter-1996] P. Breiter, M. Sadek; A Rational Agent as a Kernel of a Cooperative
Dialogue Systems: Implementing a Logic Theory of Interaction;
Proceedings of ECAI’96 Workshop on Agent Theories, Architectures and
Languages; Springer-Verlag, Berlin, pp. 261-276; 1996

[Brooks-1985] R. Brooks; A robust layered control system for a mobile robot; Technical
Report AIM-864, MIT AI Lab., Cambridge MA, 1985

[Brustolini-1991] J. Brustolini; Autonomous Agents: characterization and requirements;
Carnegie Mellon Technical Report CMU-CS-91-204; Pittsburgh; 1991

[Chavez-1996] A. Chavez, P. Maes; Kasbah: An Agent Marketplace for Buying and
Selling goods; Proceedings of the First International Conference on the
Practical Application of Intelligent Agents and Multi-Agent Technology,
Londres (Reino-Unido), 1996

[Chung-1997] P. E. Chung, Y. Huang, S. Yajnik, D. Liang, J. C. Shih, C.-Y. Wang, and
Y. M. Wang (1997) DCOM and CORBA Side by Side, Step By Step, and
Layer by Layer. C++ Report Magazine, Setembro 1997.

[Coelho-1994] H. Coelho; Inteligência Artificial em 25 lições; Fundação Calouste
Gulbenkian; 1994

[Collins-1998] J. Collins, B. Youngdahl, S. Jamison, B. Mobasher, M. Gini; A market
architecture for Multi-Agent contracting; 2nd International Conference on
Autonomous Agents; Minneapolis, Estados Unidos da América; 1998

[Davis-1980] R. Davis; Report on the Workshop on Distributed Artificial Intelligence;
SIGART Newsletter, n. 73, pp. 42-52; October 1980

[Davis-1983] R. Davis, R. Smith; Negotiation as a metaphor for Distributed Problem
Solving; Artificial Intelligence, vol. 20, n. 1, pp. 63-109; 1983

[Engelmore, 1988] R. Englemore, T. Morgan; Blackboard Systems; Addison-Wesley.

[Fordyce-1992] K. Fordyce, R. Dunki-Jacobs, B. Gerald, R. Sell, G. Sullivan; Logistics
Management System: an advanced Decision Support System for the

Agent-based Systems

70

http://wwwseg.cs.hut.fi/~kta/corba-comparison/
http://wwwseg.cs.hut.fi/~kta/corba-comparison/
http://wwwseg.cs.hut.fi/~kta/corba-comparison/
http://wwwseg.cs.hut.fi/~kta/corba-comparison/

Fourth Decision Tier Dispatch on Short-Interval Schedulling; Production
and Operations Management; vol. 1, n. 1, pp. 70-86; 1992

[Franklin-1996] S. Franklin, A. Graesser; Is it an Agent or just a Program?: A Taxonomy
for Autonomous Agents; Third International Workshop on Agent
Theories, Architectures and Languages; Springer-Verlag; 1996

[Geist-1994a] A. Geist, A. Beguelim, J. Dongarra, W. Jiang, R. Mancheck, PVM 3
User's Guide and Reference Manual, Technical Report ORNL/TM -
12187, Oak Ridge National Laboratory, Maio 1994.

[Geist-1994b] A. Geist, PVM: A User's Guide and Tutorial for Networked Parallel
Computing, MIT Press 1994. http://www.netlib.org/pvm3/book/pvm-
book.html

[Gray-1995] Gray, Agent Tcl: Alpha release 1.1, Computer Science Department,
Dartmouth College, USA

[Gruber-1993] T. Gruber; A translation approach to portable ontologies; Knowledge
Acquisition; vol. 5, n. 2, pp 199-220; 1993

[Guttman-1998] R. Guttman, P. Maes; Agent mediated integrative negotiation for Retail
Electronic Commerce; Proceedings of the Workshop on Agent Mediated
Electronic Trading, Minneapolis, Estados Unidos da América, 1998

[Hayes-Roth-1995] B. Hayes-Roth; An Architecture for Adaptive Intelligent Systems;
Artificial Intelligence; Special Issue on Agents and Interactivity, 72, pp.
329-365; 1995

[Koestler-1967] A. Koestler; The Ghost in the Machine; Hutchinson & Co. Ltd., 1967

[Labrou-1988] Y. Labrou, . Finin; Semantics and Conversations for an Agent
Communication Language; em Readings in Agents; M. Huhns, M.
Singh; Morgan Kaufmann, San Mateo CA, pp. 235-242; 1988

[Lieberman-2001] H. Lieberman, E. Rosenzweig, P. Singh; Aria: An Agent for annotating
and retrieving images; IEEE Computer, vol. 34, n. 7, pp. 57-62; July
2001

[MPI-1995] MPI: A Message-Passing Interface Standard. Message Passing Interface
Forum Junho 1995.

[Maes-1995] P. Maes; Artificial Life meets Entertainment: life like Autonomous
Agents; Communications of the ACM, 38, 11, 108-114; 1995

[META-1998] META Group Consulting (1998) CORBA vs. DCOM - Solutions for the
Enterprise; Março de 1998;

 http://www.sun.com/swdevelopment/news/CORBA.shtml

[Minsky-1986] M. Minsky; The Society of Mind; Simon and Schuster;1986

[Mitsubishi-1997] Mitsubishi Electric ITA, Concordia: an infrastructure for collaborating
Mobile Agents, First International Workshop on Mobile Agents, 1997

Agent-based Systems

71

http://www.netlib.org/pvm3/book/pvm-book.html
http://www.netlib.org/pvm3/book/pvm-book.html
http://www.netlib.org/pvm3/book/pvm-book.html
http://www.netlib.org/pvm3/book/pvm-book.html
http://www.sun.com/swdevelopment/news/CORBA.shtml
http://www.sun.com/swdevelopment/news/CORBA.shtml

[Mori-1988] J. Mori, H. Torikoshi, K. Nakai, K. Mori, T. Masuda; Computer Control
System for Iron and Steel Plants; Hitashi Review; vol. 37, n. 4, 251-8;
1988

[Morley-1993] R. Morley, C. Schelberg; An analysis of Plant-specific Dynamic
Scheduller; NSF Workshop on Dynamic Schedulling; 1993

[Nilsson-1981] N. Nilsson; Distributed Artificial Intelligence; Report SRI International;
Menlo Park CA; 1981

[Nwana-1996] H. Nwana; Software Agents: an overview; Knowledge Engineering
Review; vol. 11, n. 3, pp. 205-244; 1996

[Odyssey] Odyssey at General Magic Inc., http://www.genmagic.com/agents/

[Praça-2001a] I. Praça, M.J. Viamonte; Mecanismos de Negociação em Leilões;
Relatório Interno, ISEP; 2001

[Praça-2001b] I. Praça, C. Ramos, Z. Vale, Modelling and Simulation of Electricity
Markets: Game Theory to improve Decision Support, 15th European
Simulation Multiconference, pp.419-421, Praga (República Checa), 2001

[Parunak-1987] H. Parunak; Manufacturing experience with Contract Net; em Distributed
Artificial Intelligence; M. Huns; Pitman; pp. 285-310; 1987

[Parunak-1997] H. Parunak, A. Baker, S. Clark; The AARIA Agent Architecture;
Proceedings of the 1st International Conference on Autonomous Agents;
Marina del Rey, CA, 1997

[Ramos-1993] C. Ramos; Planeamento e Execução Inteligente de Tarefas em Robótica
de Montagem e de Manipulação; Tese de Doutoramento; Faculdade de
Engenharia da Universidade do Porto; 1993

[Ramos-1996] C. Ramos, A Holonic Approach for Task Scheduling in Manufacturing
Systems, IEEE International Conference on Robotics and Automation,
pp. 2511-2516, Minneapolis (Estados Unidos da América), 1996

[Ramos-2001] C. Ramos; Sistemas de Apoio à Decisão com Inteligência Escalável;
Lição apresentada no âmbito das Provas de Agregação; DEEC –
Faculdade de Engenharia da Universidade do Porto; 2001

[Rao-1991] A. Rao, M. Georgeff; Modeling rational agents within a BDI-
architecture; Technical Report 14; Australian AI Institute; Carlton,
Australia, 1991

[Rodrígues-1998] J. Rodrígues-Aguilar, F. Martín, P. Noriega, P. Garcia, C. Sierra; Towards
a testbed for Trading Agents in Electronic Auction Markets; AI
Communications; IOS Press; 1998

[Russell-1995] S. Russell, P. Norvig; Artificial Intelligence a modern approach; Prentice-
Hall International Editions, 1995

Agent-based Systems

72

[Sheblé-1999] G. Sheblé, “Computational Auction Mechanisms for Reestructured
Power Industry Operation”, Kluwer Academic Publishers, Londres, 1999

[Silva-1998] N. Silva; Sistemas Holónicos de Produção; Tese de Mestrado; Faculdade
de Engenharia da Universidade do Porto; 1998

[Smith-1994] D. Smith, A. Cypher, J. Spohrer; KidSim: Programming Agents without a
Programming Language; Communications of the ACM, 37, 7, 55-67;
1994

[Sousa-1999] P. Sousa, J. Morais, Análise de Tecnologias de Distribuição, relatório
técnico, ISEP, 1999

[Sousa-2000] P. Sousa; Agentes Inteligentes em Sistemas Holónicos de Produção; Tese
de Doutoramento; Universidade do Minho; 2000

[Valckenaers-1994] P. Valckenaers, F. Bonneville, H. Van Brussel, L. Bongaerts, J. Wyns;
Results of the Holonic Control System Benchmark at the University of
Leuven; Proceedings of the International Conference on Computer
Integrated Manufacturing and Automation Technology; pp. 128-133, RPI,
Troy, NY, Estados Unidos da América, 1994

[Vale-1997] Z. Vale, A. Moura, M. Fernandes, A. Marques, C. Rosado, C. Ramos;
Sparse: An Intelligent Alarm Processor and Operator Assistant; IEEE
Expert - Intelligent Systems and Applications, vol. 12, n. 3, pp. 86-93,
May/June 1997

[Vetter-2000] M. Vetter, S. Pitsch; Towards a Flexible Trading Process over the
Internet; The European AgentLink Perspective, Lecture Notes in
Artificial Intelligence 1991, Frank Dignum, Carlos Sierra, Springer, pp.
148-162, 2000

[Viamonte-2000] M.J. Viamonte, C. Ramos, A model for an Electronic Market Place, em
Agent Mediated Electronic Commerce – The European AgentLink
Perspective, Lecture Notes in Artificial Intelligence 1991, Frank
Dignum, Carlos Sierra, Springer, pp. 115-125, 2000

[Walker-1994] J. Walker, L. Sproull, R. Subramani; Using a human face in an interface;
Proceedings of Computer-Human Interaction; pp. 85-91; Boston (Estados
Unidos da América); 1994

[Wittig-1992] T. Wittig; ARCHON – An architecture for Multi-Agent Systems; Ellis
Horwood Ltd; 1992

[Wooldridge-1995] M. Wooldridge, N. Jennings; Agent Theories, Architectures, and
Languages: a Survey; Intelligent Agents; M. Wooldridge, N. Jennings;
Springer-Verlag, 1-22; 1995

[Wooldridge-1998] M. Wooldridge, N. Jennings; Pitfalls of Agent-oriented Development;
1998

Agent-based Systems

73

[Wooldridge, 2002] M. Wooldrigde; Introduction to MultiAgent Systems, Addison-Wesley,
 2002

 [Wurman-1998] P. Wurman, M. Wellman, W. Walsh, The Michigan Internet AuctionBot:
A configurable auction server for human and software agents; 2nd
International Conference on Autonomous Agents; Minneapolis, Estados
Unidos da América; 1998

[Zue-1995] Zue V.; Navigating the Information Superhighway using Spoken
Language Interfaces; IEEE Expert Intelligent Systems and their
Applications, vol. 10, n. 5, pp. 39-43, October 1995

Agent-based Systems

74

