
by Brian D Steel



WIN-PROLOG 4.2 - Win32 Programming Guide2

WIN-PROLOG Win32 Programming Guide

The contents of this manual describe the product, WIN-PROLOG, version 4.2,
and are believed correct at time of going to press. They do not embody a
commitment on the part of Logic Programming Associates Ltd (LPA), who may
from time to time make changes to the specification of the product, in line with
their policy of continual improvement. No part of this manual may be
reproduced or transmitted in any form, electronic or mechanical, for any
purpose without the prior written agreement of LPA.

Copyright (c) 1992-2001 Brian D Steel and Logic Programming Associates Ltd

Designed and Written by Brian D Steel

The "wallpaper" used in the screen shots in this publication is based on the
Willow Boughs design by William Morris (1834-96)

Logic Programming Associates Ltd
Studio 4
The Royal Victoria Patriotic Building
Trinity Road
London SW18 3SX
England

phone: +44 (0) 20 8871 2016
fax: +44 (0) 20 8874 0449
email: support@lpa.co.uk
web: http://www.lpa.co.uk



WIN-PROLOG 4.2 - Win32 Programming Guide 3

Table of Contents

WIN-PROLOG Win32 Programming Guide............................................ 2
Introduction ......................................................................................... 8

What's in WIN-PROLOG? ......................................................... 8
About this manual .................................................................... 8

Chapter 1 - WIN-PROLOG ................................................................... 9
WIN-PROLOG and DOS-PROLOG ........................................... 9
The Anatomy of LPA-PROLOG ................................................ 9
Differences between WIN-PROLOG and DOS-PROLOG ........... 10
Some Minor Limitations in Windows ........................................ 10
What’s in this Manual ............................................................. 11

Chapter 2 - The Console Window ....................................................... 12
The Main and Console Windows ............................................. 12
Typing Commands ................................................................. 13
Editing Commands ................................................................. 13
Re-entering Commands .......................................................... 14
Multi-line Commands .............................................................. 15
Breaking In ............................................................................ 18
Clearing the Console Window ................................................. 18
Output to the Console Window ............................................... 18
Output Buffering .................................................................... 19
Two-way Scrolling .................................................................. 20
Control Characters ................................................................. 22
Discriminating between Input and Output ................................. 22

Chapter 3 - Text Windows .................................................................. 25
Text Windows ........................................................................ 25
Modeless MDI Windows .......................................................... 25
Creating a Text Window ......................................................... 25
Entering Text ......................................................................... 26
Windows and Controls ............................................................ 27
Entering Further Commands ................................................... 28
Reading from a Text window................................................... 29
Writing to a Text window........................................................ 29
Copying Text between Windows.............................................. 31
Closing a Text window ........................................................... 32
Rows, Columns and Offsets..................................................... 33
Finding a Line ........................................................................ 33
Counting Characters, Words and Lines .................................... 35
Finding Text .......................................................................... 36
The Window Dictionary .......................................................... 37

Chapter 4 - Standard Dialogs .............................................................. 38
Simple Modal Dialogs ............................................................. 38
The Message Box ................................................................... 38
Message Box Styles ................................................................ 40



WIN-PROLOG 4.2 - Win32 Programming Guide4

The About Box ...................................................................... 41
The Open and Save Boxes ...................................................... 41
The Font Box ........................................................................ 45
The Print and Print Setup Boxes ............................................. 47
The Status Box ...................................................................... 49
The Busy (Hourglass) Cursor ................................................... 50
Find and Change Boxes .......................................................... 50

Chapter 5 - User Windows and Dialogs ................................................ 52
User and Dialog Windows ....................................................... 52
Creating a User Window ......................................................... 52
Lack of Control ...................................................................... 53
Creating a Dialog Window ...................................................... 53
Differences between User and Dialog Windows ......................... 55
Creating Invisible Dialogs ........................................................ 56
Manipulating Dialogs .............................................................. 57
Changing Window Titles ......................................................... 58
Resizing Windows .................................................................. 59

Chapter 6 - Control Windows ............................................................. 62
Control Windows ................................................................... 62
Control Classes ...................................................................... 62
The Button Class.................................................................... 63
Programming Button Controls ................................................. 65
The Edit Class ........................................................................ 66
Programming Edit Controls ..................................................... 69
The Listbox Class ................................................................... 70
Programming Listbox Controls ................................................ 71
The Combobox Class ............................................................. 76
Programming Combobox Controls .......................................... 76
The Static Class ..................................................................... 77
Programming Static Controls .................................................. 78
The Scrollbar Class ................................................................. 79
The Grafix Class .................................................................... 81

Chapter 7 - Typefaces and Fonts ......................................................... 83
Typefaces versus Fonts ........................................................... 83
Predefined Fonts .................................................................... 83
Creating and Using a Font ...................................................... 84
Care in Font Handling ............................................................ 84
Closing a Font ....................................................................... 86
Enumerating Typefaces........................................................... 86
Checking Font Data ............................................................... 89
The Font Dictionary ............................................................... 90
Graphics Programming ........................................................... 90

Chapter 8 - Menus ............................................................................. 91
Predefined Menus................................................................... 91
Creating a Menu .................................................................... 91
Adding Items to a Menu .......................................................... 91
Removing Items from a Menu.................................................. 92



WIN-PROLOG 4.2 - Win32 Programming Guide 5

Care in Menu Handling ........................................................... 93
Closing a Menu ...................................................................... 94
Checking Menu Entries ........................................................... 95
Separators, Checkmarks and Grey Menu Items ......................... 97
The Menu Dictionary .............................................................. 99

Chapter 9 - General Window Handling .............................................. 100
Window Handles .................................................................. 100
External Windows ................................................................ 101
Logical and Raw Handles ...................................................... 101
Finding an External Window Handle ...................................... 102
Window Styles ..................................................................... 103
Window Size and Area.......................................................... 106
Window Classes ................................................................... 107

Chapter 10 - Windows Messages ....................................................... 108
Windows and Messages ........................................................ 108
Prolog and Messages ............................................................ 108
Anatomy of a Message ......................................................... 108
Predefined Modeless Dialog Messages .................................... 109
Window Menu and State Messages ........................................ 109
Predefined and User Menu Messages ..................................... 110
Graphics Messages ............................................................... 111
Message Hooks and Subclassing ............................................ 111
Message Preprocessing ......................................................... 112
Window Handlers ................................................................. 113
'?FIND?'/3: The Find Box Hook ............................................ 113
'?CHANGE?'/3: The Change Box Hook ................................ 114
Modal Dialog Message Handlers ............................................ 115
Modeless Dialog Message Handlers ........................................ 116
Generic Window Handlers .................................................... 116
'?MESSAGE?'/4: The Message Hook ..................................... 116

Chapter 11 - Creating and Using Dialogs ........................................... 119
Dialog and Control Windows ................................................. 119
Building a Dialog .................................................................. 119
Writing a Modal Dialog Handler............................................. 120
Calling the Modal Dialog ....................................................... 121
Writing a Modeless Dialog Handler ........................................ 124
Calling the Modeless Dialog .................................................. 125
Responses and Actions ......................................................... 127
Freeing Memory Resources ................................................... 130

Chapter 12 - Graphics...................................................................... 132
Fundamental Considerations ................................................. 132
Windows and Device Contexts............................................... 133
Repainting Graphics ............................................................. 134
Graphics, "Button" and "Grafix" Windows ............................... 135
Messages and Graphics ......................................................... 137
MSG_PAINT - Window needs painting ................................... 137
MSG_LEFTDOWN - Left mouse button pressed ..................... 137



WIN-PROLOG 4.2 - Win32 Programming Guide6

MSG_LEFTDOUBLE - Left mouse button double clicked ......... 137
MSG_LEFTUP - Left mouse button released ........................... 137
MSG_RIGHTDOWN - Right mouse button pressed ................. 138
MSG_RIGHTDOUBLE - Right mouse button double clicked..... 138
MSG_RIGHTUP - Right mouse button released ...................... 138
MSG_MOUSEMOVE - Mouse moved to new position ............. 138
MSG_CHAR - Character returned from keyboard ................... 138
Graphics Components: Objects and Functions ........................ 139
GraFiX Objects: Backgrounds ................................................ 140
GraFiX Objects: Bitmaps....................................................... 140
GraFiX Objects: Brushes ....................................................... 141
GraFiX Objects: Cursors ....................................................... 142
GraFiX Objects: Fonts .......................................................... 143
GraFiX Objects: Foregrounds ................................................ 144
GraFiX Objects: Icons ........................................................... 144
GraFiX Objects: Metafiles ...................................................... 145
GraFiX Objects: Pens ........................................................... 145
GraFiX Objects: Raster Operations ........................................ 146
GraFiX: Setting the Device Context ....................................... 147
GraFiX: Changing Device Context Object Selections ............... 148
GraFiX: Changing Device Context Mapping and Origin ........... 149
GraFiX: Mouse Interaction .................................................... 150
GraFiX: Printer Control ........................................................ 151
GraFiX: Window Control ...................................................... 152
GraFiX: Device Contexts and Error Handling .......................... 152

Appendix A - Character Sets and Fonts ............................................. 153
ASCII, ANSI and the IBM PC Legacy ..................................... 153
The 32-bit Character Set, Unicode and ISO/IEC 8859-1 ......... 153
The Lexical Table ................................................................. 154
Old Source Files and the Codepage 437 Character Set............ 155
New Source Files, ISO/IEC 8859-1 and Unicode .................... 155
Sorting and Term Comparison .............................................. 155

Appendix B - Text Data Types .......................................................... 156
The Atom............................................................................ 156
The Char list ........................................................................ 156
The String ........................................................................... 157
Uses of Strings and Atoms in Windows .................................. 157
Character Encoding in Strings and Atoms............................... 157
Optional and Compulsory Atoms and Strings.......................... 158

Appendix C - Programming Considerations ........................................ 159
Multitasking and Good Behaviour .......................................... 159
Relinquishing Control ........................................................... 159
Optimised Tail Recursion ...................................................... 160
Explicit Yielding of Control ................................................... 161
File Management.................................................................. 162
The Keyboard and Focus ...................................................... 162
The Mouse and the Cursor .................................................... 163



WIN-PROLOG 4.2 - Win32 Programming Guide 7

Buffered Console Output ...................................................... 164
Executing External Applications ............................................. 167

Appendix D - Window Styles............................................................. 168
Window Styles: 32-bit Integers .............................................. 168
Hexadecimal Notation .......................................................... 168
Generic Window Styles ......................................................... 169
Button Control Styles ........................................................... 170
Edit Control Styles................................................................ 171
Listbox Control Styles ........................................................... 171
Combobox Control Styles ..................................................... 172
Scrollbar Control Styles......................................................... 172
Static Control Styles ............................................................. 173
Grafix Control Styles ............................................................ 173
Dialog Pseudostyles .............................................................. 173
Symbolic to Integer Conversion ............................................. 174

Appendix E - Window Classes ........................................................... 175
Window Classes and Pseudoclasses ........................................ 175
User Window Classes and Pseudoclasses ................................ 176
Predefined Window and Pseudoclass Classes .......................... 176

Appendix F - Initialisation Files .......................................................... 177
Persistent Data: the .INI File .................................................. 177
Files, Sections and Entries ..................................................... 177
Reading and Writing Data in .INI files ..................................... 178
Creating .INI Files ................................................................ 178
Creating and Deleting Sections and Entries ............................. 179
Shared .INI File Etiquette ...................................................... 180

Appendix G - The Win32 API Predicates ........................................... 181
The Win32 Application Programming Interface (API) .............. 181
Specifying the Module and Function....................................... 181
Optimising the Function Lookup............................................ 182
Data Buffers ........................................................................ 182
Using Memory Files with Win32 API...................................... 184
Named Memory Addresses .................................................... 185
Indexed Memory File Addressing ........................................... 185
The Internal Buffer ............................................................... 186
Examples ............................................................................. 187
The winapi/4 and wintxt/4 Predicates ................................... 188

Index .............................................................................................. 190



WIN-PROLOG 4.2 - Win32 Programming Guide8

Introduction

Welcome to LPA-PROLOG for Win32 (WIN-PROLOG)! This exciting version of
LPA's acclaimed Prolog compiler is the successor to the previous LPA-PROLOG

for Windows. The previous system provided a 32-bit programming environment
within the Win16 API (Application Programming Interface) of Windows 3.1,
while the new version is a true Win32 application, working directly with the 32-
bit Windows NT and Windows 95 API. As well as providing access to as much
of your machine's memory as you want (previously limited to two 16Mb
segments), WIN-PROLOG provides convenient access to a large number of
Windows Graphical User Interface (GUI) functions, allowing you to create
polished Windows applications.

What's in WIN-PROLOG?

WIN-PROLOG is a no-compromise, 32-bit Prolog compiler and programming
environment. Fully conforming to the Edinburgh standard, a complete set of
Clocksin and Mellish predicates is augmented to provide a high degree of
compatibility with Quintus Prolog. A unique string data type and memory-
buffered files permit powerful file, window and other input/output (I/O)
processing not normally possible in Prolog, as well as direct control of the Win32
GUI and 32-bit DLLs, DDE and OLE automation applications.

WIN-PROLOG provides an MDI-compliant programming environment, featuring
multiple program edit windows, incremental and optimised compilation, source
level debugging, and comprehensive text search and replace facilities. All of the
GUI features used by the environment, and many more besides, are directly
available to Prolog programs, allowing custom dialogs and windows to be built
and shipped as part of an application.

Dynamic Link Libraries (DLLs) written in C/C++, Pascal or any other Windows
development language can be loaded and called by WIN-PROLOG, and all types
of data can be passed Prolog programs and the DLLs' functions. Furthermore,
DLLs can send messages to Prolog at any point, allowing background processing,
modeless dialogs, and interprocess communication to be built in easily.

About this manual

This manual describes the Windows programming features of WIN-PROLOG,
and should be used in conjunction with the Technical Reference and Programming
Guide. Throughout this manual, illustrated examples show how the various
features of WIN-PROLOG can be combined to provide a truly powerful data
processing engine. Please enjoy this manual, and have fun with WIN-PROLOG!

Brian D Steel, 18 Sep 01



WIN-PROLOG 4.2 - Win32 Programming Guide 9

Chapter 1 - WIN-PROLOG

This chapter serves as an introduction to WIN-PROLOG and compares it with
its sister product, DOS-PROLOG. A number of topics are dealt with in brief: later
chapters deal with specific subjects in greater detail.

WIN-PROLOG and DOS-PROLOG

As mentioned above, there are in fact two versions of LPA-PROLOG (three if
you include the old Win16 version): these two products are based upon a single
32-bit Prolog kernel, and differ only in their operating system interfaces. WIN-
PROLOG runs on any Intel-hosted Win32 environment, including Windows NT
3.51, NT 4.0 and 95. It can also run under Windows 3.1 with the help of
Microsoft's Win32s subsystem. DOS-PROLOG, on the other hand, runs directly
under DOS on 386 or better machine, using an integral DOS extender.

Around 90% of the internal programming code is shared between these
versions, assuring both exceptional compatibility between the Windows and
DOS platforms, and guaranteed parallel development: whenever new features
are added to the kernel, they are automatically included in both versions.

The Anatomy of LPA-PROLOG

Irrespective of its operating system environment, LPA-PROLOG consists of
three main components: a kernel, an overlay file, and an operating system
interface. A basic understanding of this anatomy will help appreciate the main
differences between WIN-PROLOG and DOS-PROLOG, as well as point to those
areas where total compatibility is assured.

The kernel is written entirely in 32-bit, 386 assembly language, and provides
the inference engine, garbage collector, data and memory management,
fundamental built-in predicates and device-independent input/output facilities.
It is literally a complete Prolog system, minus the operating system interface and
those predicates implemented in Prolog. Except for the operating system
interface, both WIN-PROLOG and DOS-PROLOG are assembled from the same
source code files, guaranteeing the continued low-level compatibility of these
two products.

The overlay file is written entirely in Prolog. This provides the numerous
predicates which are effectively variants or combinations of the fundamental
ones built in to the kernel itself, and hooks between the kernel and the operating
system. Debugging, file editing, error reporting and recovery, and many other
features of the complete Prolog system are built at this level. Again, the bulk of
the overlay file for both WIN-PROLOG and DOS-PROLOG is compiled from the
same source code files, guaranteeing the products’ intercompatibility.



WIN-PROLOG 4.2 - Win32 Programming Guide10

The operating system interface for WIN-PROLOG is written in a mixture of 32-
bit, 386 assembly language and 32-bit C, and is physically compiled into the
same file as the kernel. This is the only portion of the file PRO386W.EXE which
is completely independent of DOS-PROLOG. The latter's operating system
interface is written completely in 32-bit, 386 assembly language, and is bound
together with a third-part "DOS extender" to allow the program to run directly
under MS-DOS or a DOS box. This DOS extender is simply a program which
runs under MS-DOS (which is a 16-bit operating system) and provides a 32-bit
environment for an application.

Differences between WIN-PROLOG and DOS-PROLOG

Two major groups of constraints govern the limits of compatibility between WIN-
PROLOG and DOS-PROLOG: operating system features and operating
limitations. The former group is perhaps the more obvious, so let’s start here.

Anyone who has used Windows will appreciate the ease with which applications
can be learnt and used, since they all share a (more or less) common interface.
The mouse is used to point at menu items or dialog buttons, and text windows
can be scrolled and edited at will. There is no such common interface in DOS
itself, and each individual application has taken its own approach to the user
interface. This difference between Windows and DOS has affected the design
of one key area of WIN-PROLOG: its GUI functions.

DOS-PROLOG has a powerful, but low-level set of text, graphics, mouse and
keyboard handling predicates, which can be used to create fast, multi-coloured
window-based applications in virtually any style. Because of their low-level
nature, these predicates are very flexible, but before they can be utilised in an
application, they require a considerable amount of programming.

The majority of the low-level text and graphics interface predicates are absent
from WIN-PROLOG, which instead includes a number of predicates which call
Win32 API functions to create and manipulate dialogs, windows, menus, fonts,
graphics and so on.

Some Minor Limitations in Windows

Compared to DOS, Windows actually imposes some limitations. Some low-
level features work only in DOS-PROLOG, where it is possible, for example, to
program a number of mouse functions, access the video BIOS for changing
screen modes, and to use hardware I/O ports to control time, sound and other
attributes. Most of these functions are simply not available under Windows,
which handles such matters internally. Other limitations of the previous Win16
version, such as a coarse timer resolution (55ms) and memory segment size
limits (16Mb) are no longer present in the Win32 version of WIN-PROLOG.



WIN-PROLOG 4.2 - Win32 Programming Guide 11

Few of these limitations of Windows are likely to affect programs seriously,
although they must be borne in mind when attempting to port between the two
LPA-PROLOG platforms. By and large, the existence of these small limitations
will be considerably outweighed by the ease of use and elegance of the Windows
environment compared with DOS.

What’s in this Manual

The remainder of this manual concentrates on WIN-PROLOG, referring to DOS-
PROLOG only when necessary, to contrast a feature or note a subtle difference.
Further information about WIN-PROLOG can be found in the Prolog
Programming Guide and Technical Reference.



WIN-PROLOG 4.2 - Win32 Programming Guide12

Chapter 2 - The Console Window

This chapter describes the uses of the "console" window of WIN-PROLOG,
covering basic input and output, command editing, scrolling, and other features.
The console window provides the fundamental interaction between WIN-
PROLOG and the user.

The Main and Console Windows

When WIN-PROLOG starts up, it initially displays a graphical window showing
a welcome banner, as shown in Fig 2.1, which remains on the screen for a short
period while the kernel and overlay files are loaded. Once WIN-PROLOG is
ready for input, it removes this banner, replacing it with two windows, the
"main" and "console" windows. Initially, the two windows appear as one, as

shown in Fig 2.2. This is because WIN-PROLOG is a Multiple Document
Interface (MDI) application, and the main window surrounds and contains all
other windows, including the console. Initially, the console is maximised to fill
the entire main window client area.

The main and console windows are WIN-PROLOG's command centre: all
operations are launched from either the main window's menus or by commands
typed into the console's client area. The menus provide the usual collection of
file, edit, search, window and help commands, together with a number of run
and options commands which include compilation, syntax checking and
debugging features. The menu functions are described in the WIN-PROLOG

Fig 2.1 - The WIN-PROLOG welcome banner



WIN-PROLOG 4.2 - Win32 Programming Guide 13

User Guide: the present manual is concerned with the fundamental behaviour
and programming aspects of WIN-PROLOG.

The client area of the console window is a scrollable edit control which functions
just like a "glass teletype": you can type commands, list programs, and use
standard Prolog output predicates to display results and other data. Unlike a
traditional glass teletype, however, you can scroll back over data which has
disappeared from view, modify and edit any text (including output), and use cut-
and-paste features to edit and re-enter previous commands.

Typing Commands

You type commands into the console window just like you would into any glass
teletype application, using the keyboard and pressing <enter> when you are
ready to submit your input. Each time you press <enter>, the line of text you
are working on is given to Prolog. For example, type the characters:

?- write('Hello World!'), nl. <enter>

In this, and all other examples, only type the characters in bold letters, and press
the named key for anything bracketed in <italics>. The result of typing this
command is shown in Fig 2.3. Any Prolog command or query can simply be
typed and entered, line by line, in this way.

Editing Commands

If you make a mistake during input, you can use the <backspace> key to correct
it, or the mouse or cursor keys to reposition the cursor to insert text or delete

Fig 2.2 - The WIN-PROLOG main and console windows



WIN-PROLOG 4.2 - Win32 Programming Guide14

mistakes. You can also cut and paste text from anywhere within the console
window to build complex commands. In fact, you can cut or paste data between
this and any other text window on the screen which supports the Windows
clipboard (though see below for a discussion about character sets and international
language support).

Please note: the keystrokes and mouse operations required to perform editing
are defined by Windows itself, and so are beyond the scope of the current
manual. If you are new to Windows, you should consult your Windows User
Guide or help files for further information.

Re-entering Commands

As mentioned above, when you type <enter>, the line of text you are working
on is given to Prolog. This feature is not limited to the last line of text in the
console window: if you move the caret (the flashing Windows cursor) to any line
of text, and then press <enter>, that line will be copied to the bottom of the
console window, and submitted automatically. To try this out, click the mouse
somewhere in your "write('Hello World!'), nl." command, without dragging a text
selection area, and then press <enter>. This will have the effect of retyping your
command, as shown in Fig 2.4.

You do not have to reenter the command as it stands: you can edit it before
pressing <enter>. For example, using the mouse, drag a selection box over the
word "World" in one of your copies of the command, as show in Fig 2.5. Then,
type the word (bold letters only):

?- write('Hello There!'), nl. <enter>

Fig 2.3 - A simple command in the console window



WIN-PROLOG 4.2 - Win32 Programming Guide 15

followed by <enter>. This time, your edited version of the command will be
copied and executed, as shown in Fig 2.6. This editable command reentry is a
key feature of WIN-PROLOG.

Multi-line Commands

Up until now, if you have been following the instructions, you will have entered
commands of exactly one line's length. There will be times when you only want
to enter part of a line: this can of course be achieved by cutting and pasting, or

Fig 2.4 - Re-entry of a command in the console window

Fig 2.5 - Preparing to edit a command for reentry



WIN-PROLOG 4.2 - Win32 Programming Guide16

by deleting the parts of the line you do not want, but there is an easier method:
if you use the mouse to drag a selection box around the bit of the command you
want to submit, and then press <enter> to enter, you will submit just the bit of
text that is highlighted.

The identical technique can be used to enter multi-line commands. Remember
that each time you press <enter>, either the current line or (if there is one) the
selection area is copied to the bottom of the console and submitted to Prolog.

If you want to type a complex command over several lines, with the option of
editing any part of the command before finally submitting it as a whole, you can
do so by pressing <ctrl> and <enter> together at the end of each line, rather
than just <enter>. Remember, the <enter> key means "submit this line (or
selection area", while <ctrl-enter> means "insert a new line in the text". When
you are ready to submit the whole command, simply drag the mouse to enclose
it in a selection box, and press <enter>. Try the following simple example for
practice:

?- write('this is line one'), <ctrl-enter>
nl, <ctrl-enter>
write('and this is line two'), <ctrl-enter>
nl.

Once you have typed this, using <ctrl-enter> rather than just <enter> at each
line break, use the mouse to drag a box around the whole command, as shown
in Fig 2.7. Next, press <enter> to submit the whole command at once: your
selection will be copied into a single command line at the bottom of the console
window, and executed as shown in Fig 2.8.

Fig 2.6 - The result of reentering an edited command



WIN-PROLOG 4.2 - Win32 Programming Guide 17

The size of any one submission is limited to 1kb (1024 characters), which is the
maximum physical length of a single line, although a command may be made
up of any number of smaller entries. In the example just shown, you could have
pressed <enter> after each line: the difference is that you would have been
submitting the command line by line, and if, for example, you spotted an error
in line 1 while typing line 3, it would have been too late to fix it other than by
breaking in and starting over (see next section).

Fig 2.7 - Entering a multi-line command

Fig 2.8 - The result of entering a multi-line command



WIN-PROLOG 4.2 - Win32 Programming Guide18

Breaking In

If you make a mistake while entering a command, or the system appears to
ignore your input, perhaps because you have left a quote or a bracket unclosed,
you can break in by typing the <ctrl> and <break> keys together. A message
will be shown to say you have interrupted execution, giving you the option to
start over at the "?-" prompt.

The <ctrl-break> key combination is used throughout WIN-PROLOG, not only
to interrupt the command line editor, but also to break in to programs which
have entered infinite loops, or which are just performing long computations that
you decide to abort.

Clearing the Console Window

The console window never needs to be cleared out: as it gradually fills to capacity
(somewhere between 32..48kb), it automatically discards data from the top as
more space is needed. Apart from a brief flicker while it performs this task, you
will not know that the clean-out has occurred.

Should you wish to, you can, of course, clear the console window at any time,
using any one of a number of methods. The simplest way is to select all the text
in the window and then press <backspace> or <del>. You can select the whole
window either by dragging the mouse, by choosing the "select All" option from
the "Edit" menu, or by typing <ctrl-A>.

For the sake of making the examples in the rest of this manual easier to see in
the illustrations, we will be clearing out the console window at regular intervals.
Try it now: using the mouse, click on "Edit" on the console window menu, and
choose the "select All" option, as shown in Fig 2.9.

When you have completed your menu choice, the whole window will be
highlighted as shown in Fig 2.10. Now press <backspace> to delete the
highlighted text, and to give yourself a clean console as shown in Fig 2.11.

Output to the Console Window

As you will have seen from the examples above, writing to the console window
is simply a matter of using standard Prolog output predicates. There are other,
more advanced ways in which to perform output to this and any other window:
these will be discussed fully in Chapter 3. Staying for now with standard output
predicates, there are some considerations to bear in mind when comparing the
behaviour of WIN-PROLOG with other glass teletype applications. The next
three sections discuss these points.



WIN-PROLOG 4.2 - Win32 Programming Guide 19

Output Buffering

One of the problems with Windows is that individual output operations are very
slow. In particular, it simply would not be practical to update the screen every
time a character was output: for this reason, output to the console window is
buffered. The output buffer holds up to 1kb, and when it is full, the whole block
is displayed at once. The buffer is also flushed whenever an input predicate tries
to read from the console window, so that any prompts are up to date.

Fig 2.10 - The result of selecting all text

Fig 2.9 - Selecting text with the "Edit/select All" option



WIN-PROLOG 4.2 - Win32 Programming Guide20

Normally, you will not need to worry about this buffering, since its only effect
will be to speed up output: occasionally, however, you might want output to be
displayed independently of input, for example when printing diagnostic messages.
By "displaying" the end of file character, <ctrl-Z> (code 26), you can flush the
output buffer. The simplest way of flushing the buffer would be to use the putb/
1 predicate with "26" as its argument (see Appendix C for further discussion of
buffering). The ttyflush/0 predicate also performs this operation.

Two-way Scrolling

The console window is equipped with both vertical and horizontal scroll bars,
and has a logical width of around 1024 columns and a logical height limited only
by available memory. The console window may hold up to 48kb (the exact figure
depends upon external factors including the version of Windows being used),
corresponding to about 48 full-width text lines, or, say, rather over 1000 lines
of 40 column text. Whenever WIN-PROLOG is waiting for input, you can use
the vertical scroll bar to review previous output, up to the limit stored. You
cannot scroll the window during output, because this could cause information
to be missed, or even written into the wrong part of the console window. All
output goes to the bottom of the console window, and if you attempt to scroll
during output, your actions will be overridden by WIN-PROLOG!

Unlike some glass teletype applictions, text does not automatically wrap when
it reaches the border of a window, so any long lines of output, such as large lists,
will simply disappear off the right hand edge. Character-level wrapping will
occur if a line exceeds the logical width of the window (around 1024 columns).
Depending upon your video adapter and monitor, as well as the size of the
console window, you may be able to see up to around 75-150 columns of text

Fig 2.11 - The console window cleared of all text



WIN-PROLOG 4.2 - Win32 Programming Guide 21

at any one time: you will need to use horizontal scrolling to view the ends of long
lines of text. Try the following example:

X = 'the quick brown fox jumps over a lazy dog', Y = [X,X,X]. <enter>

This command creates a list in Y which is too long to display all at once, so the
end of the result will disappear off the right border of the window, as shown in
Fig 2.12. By using the horizontal scroll bar, you can move the text area around
to see more of your output, as shown in Fig 2.13.

Fig 2.12 - Output which is too wide for the console

Fig 2.13 - The console scrolled to reveal a long text line



WIN-PROLOG 4.2 - Win32 Programming Guide22

Some glass teletype programs rely on screen-edge text wrapping to create
formatted tables or the like; this approach is at best risky, since such programs
often support multiple screen widths. In WIN-PROLOG, this trick will not work
at all: when you want text to appear on a new line, you must output a new line,
for example by using the nl/0 predicate.

Control Characters

Many glass teletype programs use control characters (those in the range
00h..1fh) to perform special functions. For example, "displaying" the <linefeed>
character (0ah) will move the cursor current column in the next line. Like most
other control characters, this behaves differently under Windows.

In WIN-PROLOG, most control characters display graphic characters, rather
than perform a function as in DOS-PROLOG. In Table 2.1 you will find the list
of control characters which perform special functions under WIN-PROLOG.

Table 2.1 - Control Characters used in Console Window Output

Character Code Name Action

<ctrl-@> 00h Null Output a space character
<ctrl-G> 07h Bell Emit the standard beep
<ctrl-H> 08h Back Space Delete last character
<ctrl-I> 09h Tab Perform indentation to next tabstop
<ctrl-J> 0ah Line Feed Ignored (see <ctrl-M>)
<ctrl-L> 0ch Form Feed Clear whole of console window
<ctrl-M> 0dh Carriage Return Output a carriage return/line feed
<ctrl-Z> 1ah End of File Flush output buffer to console window

Most other control characters result in their graphical representations being
displayed.

Discriminating between Input and Output

Unlike most glass teletype applications, where you are typically unable to move
the cursor outside of the command you are typing, you can move freely around
WIN-PROLOG's console window, and edit, cut, paste and generally play about
with its text. All this freedom presents WIN-PROLOG with a puzzle: when you
finally type <enter> to submit your command, how does the system separate
any prompt that might have been displayed from what you have typed?

Once a read operation is underway, and before the mouse and keyboard have
been enabled, WIN-PROLOG stores a copy of the text in the last line of the
console window. When you submit your command, by typing <enter>, WIN-
PROLOG compares your input with its stored copy of the original line, and
ignores any leading characters which match.



WIN-PROLOG 4.2 - Win32 Programming Guide 23

To illustrate this point, consider the case where the standard "?-" prompt is
displayed, and WIN-PROLOG is waiting for a command. WIN-PROLOG saves
these characters in an internal buffer, enables the mouse and keyboard editing
functions, and waits for you to press <enter>. When you have typed and
submitted your command, the whole line (including "?-") is returned. WIN-
PROLOG compares this line with the stored copy, and finding that "?-" was
present before you began typing, removes these characters from the input
before processing the remainder of the line. Type the following example, which
helps show this:

Fig 2.14 - Preparing to read from a prompt

Fig 2.15 - The result of typing input at a prompt



WIN-PROLOG 4.2 - Win32 Programming Guide24

write(hello), read(Answer). <enter>

The screen should appear as shown in Fig 2.14. Now, press <backspace> 8
times to delete the "|:" prompt and the word "hello", and then type:

helvetica. <enter>

When you press <enter>, you might be surprised to see the answer to your
query is "vetica", as shown in Fig 2.15. This is because the first three letters of
"hello" and "helvetica" are the same. Even if you cleared the console window,
or performed cut and paste operations to make up the word "helvetica" in this
example, you would always get the result "vetica", because WIN-PROLOG

ignores all leading characters of your input that match its internal copy of the
line. In general, this difference algorithm works very well: confusion can only
arise when you deliberately delete the prompt and then type some input which
happens to begin with the same characters as the original prompt.



WIN-PROLOG 4.2 - Win32 Programming Guide 25

Chapter 3 - Text Windows

This chapter describes the "text" windows of WIN-PROLOG, covering their
creation, manipulation, input and output, and low level programming. Text
windows provide facilities for text editing, information display, and other
features which go well beyond the capabilities of the console window.

Text Windows

In Chapter 2, we looked at the basic input and output features of the console
window. While very easy to use for entering and displaying simple data, the
techniques that were described are not sufficiently flexible for handling the more
complex input and output requirements of many programs. For example, cursor
addressing or the overwriting of text items is not possible, because output to the
console window always goes to the bottom of the window.

WIN-PROLOG allows you to create "text" windows to perform several functions,
including the editing of text (rather than command submission) and display of
information. Since the console window is used for all standard Prolog input and
output, special predicates are needed to perform input and output from text
windows. These techniques will, incidentally, also work with the console
window, giving considerably more power than was suggested in Chapter 2.

Modeless MDI Windows

Text windows are modeless, Multiple Document Interface (MDI) windows, each
containing a single edit control. These windows can be moved around the screen
by the user, resized, iconised, and so forth. Prolog programs can create, show,
hide, resize and otherwise manipulate them, and an arbitrary number of them
can exist at any one time, limited only by available memory resources.

Because text windows are modeless MDI windows, the user can select them at
will, type text into their edit controls, and cut and paste text between them and
any other windows (including the console window). Prolog programs can read
and write any part, or all, of the contents of any text window, making it easy to
load the windows' contents from disk files, save it as asserted clauses, or do pretty
well anything else.

Creating a Text Window

Text windows are created with the wcreate/8 predicate. Its arguments give the
window its name, type, title, size and style. Let's try an example. If you are
already in WIN-PROLOG, exit back to Windows by selecting the "eXit" option
from the "Files" menu, or by typing the "halt." command. Next, start WIN-
PROLOG up, and type the following command:



WIN-PROLOG 4.2 - Win32 Programming Guide26

?- wcreate(fred,text,`Freddie`,200,125,400,225,0). <enter>

In this, and all other examples, only type the characters in bold letters, and press
the named key for anything bracketed in <italics>.

This example will create a window known to Prolog as the atom "fred", and will
create it as a text window with the title "Freddie". The initial position will be at
(200,125) relative to the main window, and its size will be (400*225), as shown
in Fig 3.1. The style (0) is a dummy parameter here: in text windows, the style
argument is ignored.

Note the use of backwards quotes (`...`) around the title, denoting a string rather
than an atom. Throughout the Windows predicates, strings are used for general
text parameters. If you are not familiar with strings, and their relationships with
atoms and char lists, you should refer to Appendix B for further information.

Entering Text

Now that your text window is in focus, you can begin to type text into it. Unlike
the console window, where <enter> is used to submit a command or other
input, in text windows this key simply inserts a new line into the text. Try typing
some text into "fred": you can resize the window using the mouse, or cut data
from the console window and paste it into "fred". After a little such playing
around, the screen might look something like Fig 3.2.

Fig 3.1 - A text window created by wcreate/8



WIN-PROLOG 4.2 - Win32 Programming Guide 27

Windows and Controls

At this point, we should say a few words about windows and controls. In the
Windows environment, all dialogs, buttons, edit fields, scroll bars, and so forth,
are actually windows, just like the WIN-PROLOG main and console windows.
Many of the operations that you will be reading about here and in later chapters
can be applied to all types of windows, while others are restricted to just a few
window types.

Because a given operation, such as the setting of a window's text contents, can
be applied to any type of window, it is necessary to be able to distinguish between
a top level window or dialog and one of its controls when calling a window
handling predicate. In WIN-PROLOG, all top level windows are known by a
name which you give it when the window is created:

?- wcreate(fred,....

creates a top level window or dialog called "fred". All operations that you wish
to perform on this window itself would use "fred" as the first argument:

?- wsize(fred,...

and so on. Controls within top level windows do not have names of their own,
but rather are known by an integer ID code. To refer to a control within a given
window, you simply use a conjunction of the form "(name,ID)" as the first
argument:

Fig 3.2 - Sample text input after resizing the windows



WIN-PROLOG 4.2 - Win32 Programming Guide28

?- wsize((fred,123),...

would refer to the control with ID "123" within the window "fred".

In text windows, there is a single predefined "edit" control, which has an ID of
1. Whenever you want to refer to the text window itself, perhaps to change its
title or size, you just use the name that you gave it when you created it, for
example "fred". Whenever you want to refer to its predefined edit control,
perhaps to append to its text, you will use the conjunction of the name and the
ID of 1, for example "(fred,1)".

Entering Further Commands

When you want to enter another Prolog command, you must click back in the
console window. This will take "fred" out of focus, and return control to the
console window. Now type the following command into the console window
(bold letters only):

?- wedtsel((fred,1),0,64000). <enter>

Note the use of the conjunction "(fred,1)", indicating that we want to work on
the edit control (whose ID is 1) within "fred", and not "fred" itself. This creates
a selection in the edit control of your text window from 0 (the beginning) to
64000 (the end), as shown in Fig 3.3. The reason for using 64000 is that this
is greater than the maximum number of bytes a text window can hold, so will
always refer to the end of the window. If you want to see how much text is
actually selected, you can use the command:

?- wedtsel((fred,1),Start,Finish). <enter>

Fig 3.3 - All text selected by the wedtsel/3 predicate



WIN-PROLOG 4.2 - Win32 Programming Guide 29

WIN-PROLOG will return the start and finish of the selection box, as shown in
Fig 3.4.

Reading from a Text window

Allowing the user to edit text in a window is all very well, but is pretty pointless
unless there is a way to return this data to Prolog. It has already been stated that
the console window alone provides support for standard Prolog input and
output, so a new mechanism is needed for text windows. The wedttxt/2
predicate is used to read (or write) the contents of the selection area of an edit
control: in the current example, this is the whole of window "(fred,1)". Type the
command:

?- wedttxt((fred,1),Data). <enter>

This will collect all the data in "fred"'s edit control into an LPA-PROLOG string,
as shown in Fig 3.5. The string data type is a compact representation used in
LPA-PROLOG to store large amounts of text or even binary data, and is used
for all user-defined text parameters in Windows programming.

Writing to a Text window

You can write to a text window in the same way you read from one, using
wedtsel/3 to select the area you want to modify, and wedttxt/2 to replace the
selection with a new string. Type the command:

?- wedttxt((fred,1),`Hello World!`). <enter>

Fig 3.4 - Returning the size of the contents of a text



WIN-PROLOG 4.2 - Win32 Programming Guide30

This will cause the selected text in "fred"'s edit control to be replaced with the
text, "Hello World!", as shown in Fig 3.6. Note once again the use of backward
quotes, which denote the string data type used by this predicate.

Because the wedttxt/2 predicate simply replaces the selection area, it can be
used to perform selective edits, or simply to append text to an edit control.
Repeat the command:

?- wedttxt((fred,1),`Hello World!`). <enter>

Fig 3.5 - Getting the selected contents of a text window

Fig 3.6 - Replacing the selected contents of a text window



WIN-PROLOG 4.2 - Win32 Programming Guide 31

Because the selection area was reduced to zero width by the previous command,
this second command will effectively insert the output immediately after the
previous text, as shown in Fig 3.7. Any number of successive output calls can
be made to the edit control of a text window, until such time as the window fills
up (remember the approximately 64kb limit). A simple way to write arbitrary
terms to a given text window's edit control is shown below:

write_to_text_window( Window, Term ) :-
write( Term ) ~> String,
wedtsel( (Window,1), 64000, 64000 ),
wedttxt( (Window,1), String ).

This example uses the output redirection predicate, ~>/2, to create a string from
the given term, and then moves the text selection to the end of the edit control
in the given text window, before writing the given string at this location. It does
not attempt to check the amount of space left in the edit control, but it would
be simple to add this test and to clear out the first few kilobytes from time to time.

Copying Text between Windows

As a practical example of the use of strings, we will now copy the whole contents
of the console window into our text window, "fred". Although the console
window is generally used for standard Prolog input and output, it can also be
used in conjunction with the text window predicates. The console window has
no name as such, and is referred to as the integer "1" in predicates such as
wfocus/1. It too has a single edit control, whose ID is again 1. Type the following
command into the console window (onto a single line):

Fig 3.7 - Appending to the contents of a text window



WIN-PROLOG 4.2 - Win32 Programming Guide32

?- wedtsel((1,1),0,64000), wedttxt((1,1),Data),
wedtsel((fred,1),0,64000), wedttxt((fred,1),Data). <enter>

Notice how the console window scrolled sideways to make room for your
command. Up to around 1024 characters can be typed on a single line if you
want; alternatively, you can use the tricks described in Chapter 2 to enter
complex commands over several lines. When you press <enter>, there will be
a brief flurry of screen activity, after which the original contents of the console
window will be displayed in "fred", as shown in Fig 3.8. Notice how the output
binding to "Data" has wrapped around: this is because its length exceeds the
1024 or so character logical width of the console window.

Closing a Text window

Text windows are closed with the wclose/1 predicate. Closing a window
destroys it, removing it from the screen and freeing up its memory resources.
When a window is closed, its contents are lost: if you want to save the contents,
simply use wedtsel/3 and wedttxt/2 to extract the text before closing the
window. The text could then be saved in a Prolog clause, or written to a file. Type
the command:

?- wclose(fred). <enter>

The window "fred" will disappear from the screen, leaving just the console
window in view, as shown in Fig 3.9.

Fig 3.8 - The console window copied to a text window



WIN-PROLOG 4.2 - Win32 Programming Guide 33

Rows, Columns and Offsets

Unlike many glass teletype applications, where all text window-oriented input
and output works in terms of column and row (cursor) positions, WIN-PROLOG's
window system is based on linear offsets. The first character in a window is
numbered 0, the next character is 1, and so forth. There are times when it is
important to be able to relate row and column positions to linear offsets.
Examples include processing lines of input one at a time, implementing line-
oriented edit features, or even porting code from the column/row based DOS-
PROLOG system. Several predicates are provided to interface between the
row/column and linear offset models, as we will see below. Create a new text
window called "fred", using the command:

?- wcreate(fred,text,`Freddie`,200,125,400,225,0). <enter>

The window, "fred", should appear on the screen, as before, and focus will have
switched to it. Next, resize it so that it does not overlap the console window, and
type a few lines of text into it, so that it looks something like Fig 3.10. When
you have done this, click back on the console window so that you can enter
further commands.

Finding a Line

If you want to identify all the text in a single line of an edit control, you can use
the wedtlin/4 predicate. This takes a single offset as input, and returns the start
and end offsets of the line containing that offset, not including any new line
characters. The selection is not changed by this predicate: you must use wedtsel/
3 if you want to perform an operation on this line. Try the following example:

Fig 3.9 - The result of closing the text window



WIN-PROLOG 4.2 - Win32 Programming Guide34

?- wedtlin((fred,1),100,Start,Finish), wedtsel((fred,1),Start,Finish),
wedttxt((fred,1),Data). <enter>

Depending upon the text that you entered, the result of this command will look
something like Fig 3.11.

If you want to work from the row number, rather than the offset, you can use
the wedtpxy/4 predicate. This takes a given offset, and returns its column/row
equivalent, or vice versa. The following command will return the offset of the

Fig 3.10 - The new text window with some sample input

Fig 3.11 - Getting the start, finish and contents of a line



WIN-PROLOG 4.2 - Win32 Programming Guide 35

start (column 0) of the third row:

?- wedtpxy((fred,1),Offset,0,3). <enter>

The result of this command is shown in Fig 3.12. As with wedtlin/4, this
predicate simply returns information: it does not affect the selection. If you were
to combine this command with the previous example, you could return the text
for a given numbered row.

Counting Characters, Words and Lines

A text window can contain up to about 48kb (1kb is 1024 characters); once this
limit is reached, further data can be stored only by removing text from other
parts of the window. The wedttxt/2 predicate simply fails if you attempt to add
text which would overflow this limit, but you may prefer to know in advance
whether a given text operation will work. The wcount/4 predicate can be used
to return the amount of text in a window. Type the command:

?- wcount((fred,1),Chars,Words,Lines). <enter>

This command returns the number of characters and lines in the current
window, as shown in Fig 3.13. You could use these counts to implement
automatic buffering to a disk file, or to trigger a warning message, before
wedttxt/2 got to the point where it failed through lack of space.

Notice that this predicate is named simply "wcount", rather than "wedtcnt" or
suchlike: this is because it can be used on all types of window, and not just edit
controls. Throughout WIN-PROLOG, any operations which are limited to just

Fig 3.12 - Converting a row/column address into an offset



WIN-PROLOG 4.2 - Win32 Programming Guide36

one type of control window are named "wxxxyyy", where "xxx" is an abbreviation
of the control type and "yyy" is an abbreviation of the operation. Thus "wedttxt"
is used to perform text operations on edit controls. Where a predicate is not
limited to one type of control, but can be used in conjunction with any window,
it is generally named "wzzz..", where "zzz.." is the full (non-abbreviated) name
of the operation.

Finding Text

A very useful predicate, wedtfnd/6, allows you to search for a given text string
in a given window. Once again, it does not move the selection box, but simply
returns the start and end offsets of the found string. You must call wedtsel/3 to
select this area if you want to perform any operations upon it. Try the following
command:

?- wedtfnd((fred,1),0,64000,`slithy`,Start,Finish),
wedtsel((fred,1),Start,Finish), wedttxt((fred,1),`purple`).

<enter>

The call to wedtfnd/6 searches for the string "slithy" from offsets 0 to 64000
(greater than the end) in "fred"'s edit control, returning the start and finish offsets
of the first match. This area is then selected with wedtsel/3, and the text replaced
with the word "purple", as shown in Fig 3.14: it would be just as easy to convert
the word back to the original!

Fig 3.13 - Returning the character, word and line counts



WIN-PROLOG 4.2 - Win32 Programming Guide 37

The Window Dictionary

The names of all top level windows, including the text windows discussed here,
are stored in an internal table which can be retrieved by the wdict/1 predicate.
The call:

?- wdict(D). <enter>

should return the list "D = [...,fred,...]", where other system-defined windows
may or may not be present. The window dictionary is useful in programs which
perform window management, and can be used in conjunction with member/
2 to perform operations on some or all currently defined windows.

Fig 3.14 - Finding and replacing a string in a text window



WIN-PROLOG 4.2 - Win32 Programming Guide38

Chapter 4 - Standard Dialogs

This chapter describes the standard dialogs of WIN-PROLOG, covering their
appearance, parameters and uses. Standard dialogs provide facilities for
message boxes, about boxes, file selection, and other general requirements.

Simple Modal Dialogs

In Chapter 3, we looked at some of the aspects of programming "text" windows.
All of the functionality of these windows is programmable from Prolog, and
these windows provide the necessary hooks for a wide range of text applications.

Certain requirements common to most Windows applications cannot be
created using "text" windows, and a selection of standardised dialogs has been
provided to give WIN-PROLOG easy access to some of these capabilities. These
include the dialogs used to open, create and save files, as well as message boxes,
about boxes, printer setup boxes, font boxes, status boxes, find boxes and
change boxes. User-defined dialogs are discussed later in Chapter 5.

The Message Box

Windows provides many design guidelines, but very few truly standard user
interface features. One notable exception to the above is the "message" box,
used to alert the user and obtain confirmation about an action to be performed.
Such message boxes can be created using the msgbox/4 predicate. Let's try an
example. If you are already in WIN-PROLOG, exit back to Windows by selecting
the "eXit" option from the "Files" menu, or by typing the "halt." command. Next,
start WIN-PROLOG up, and type the following command:

?- msgbox('Example','Hello World!',48,Code). <enter>

In this, and all other examples, only type the characters in bold letters, and press
the named key for anything bracketed in <italics>.

This command creates a standard message box with the word "Example" as its
title, and the message "Hello World!" in its client area. The style parameter, "48",
is responsible for the exclamation mark icon and "OK" button, as shown in Fig
4.1. The style is a 32-bit integer defined by Windows itself, and can generate
a variety of icon and button combinations, as well as specifying different types
of modality.

When the "OK" button is clicked with the mouse, or <enter> is pressed, the box
vanishes, and returns the value "1", as shown in Fig 4.2, indicating that the "OK"
option has been selected. Each of the several different buttons that can be
included in a message box returns a unique number. For example, click the



WIN-PROLOG 4.2 - Win32 Programming Guide 39

mouse over "48" on the command you have just entered, change the value to
"50", and then press <enter>. Your edited command line will be copied down
to the bottom of the console window, and will result in the message box shown
in Fig 4.3. Each of the three buttons has its own code: if you click on "Retry",
for example, the returned code will be "4", as shown in Fig 4.4.

Fig 4.1 - A message box displayed by msgbox/4

Fig 4.2 - The code returned by the message box



WIN-PROLOG 4.2 - Win32 Programming Guide40

Message Box Styles

As noted above, the message box style consists of a magic number defined by
Microsoft Windows. If you have access to the Windows SDK, you will find the
definitive list of styles listed in one of the header files for your version of
Windows; otherwise, see the msgbox/4 entry in the WIN-PROLOG Technical
Reference for a listing of the message box styles supported by Windows.

Fig 4.3 - A message box with three buttons

Fig 4.4 - The return code after selecting the retry button



WIN-PROLOG 4.2 - Win32 Programming Guide 41

When experimenting, please be aware of one potential problem: not all values
for the message box values include buttons, and if you accidentally manage to
create a message box without a button, there is no way to close the box and
return to Prolog, other than by leaving Windows or using "End Task"!

The least significant 4 bits of the style dictate the button combination used by
the message box. The next most significant 3 bits of the style govern which of
the standard Windows icons is used, if any, in the message box. Remaining bits,
provide other controls over the message box' behaviour, but should be left at
zero for most purposes.

The About Box

Message boxes are among the only truly standard dialogs in Windows: most
other dialogs are created by individual applications, which explains why no two
Windows programs ever look the same or operate in quite the same manner.
One dialog, the "about" box, which is used by an application to display
information about itself, is perhaps more individualistic than any other. In WIN-
PROLOG, the about box is really a special type of message box which can
display text in a choice of two fonts and two styles, and with or without the WIN-
PROLOG logo displayed in the background. In applications, you can replace
this logo with one of your own design.

To show one style of about box, use the command:

?- abtbox('My about box','I did this one myself!',0). <enter>

This will display the about box using the OEM character set and the WIN-
PROLOG bitmap, as shown in Fig 4.5. Like msgbox/4, the parameters given
to abtbox/3 include the box title, message and style. Unlike the message box,
however, the styles relate purely to the font which is used to display the text in
the about box.

Because the about box always has just one button, "OK", it does not return a
button code: instead, abtbox/3 succeeds if "OK" is clicked with the mouse or
<enter> is pressed, or fails if <escape> is pressed.

Please note that, unlike in the previous Win16 versions of WIN-PROLOG, the
code to display the about box is contained in a separate file, PRO386W.DLL.
If this file is not available at run time, the abtbox/3 predicate simply displays a
standard Windows message box.

The Open and Save Boxes

A pair of general purpose "common" dialogs, opnbox/5 and savbox/5, provides
WIN-PROLOG with a semi-standardised interface for selecting files and directories,
and are used to implement commands such as "open", "save" and "save as". Note



WIN-PROLOG 4.2 - Win32 Programming Guide42

that these dialogs replace the former dirbox/4, which is now provided in a
source code library file for backward compatibility. These dialogs have one
unexpected side-effect: they can change the current working directory even if
you eventually cancel the dialog. For example, type the command:

?- opnbox('Files',[('Source','*.pl'),('Object','*.pc')],'system\*.*','pl',F).
<enter>

Fig 4.5 - An about box displayed by abtbox/3

Fig 4.6 - An open box displayed by opnbox/5



WIN-PROLOG 4.2 - Win32 Programming Guide 43

A file open directory box will be displayed, with a list of ".PL" files from your
current directory, as shown in Fig 4.6. You can use the mouse or the <tab> key
to move between the fields in the dialog, and the mouse or space bar to select
items from either of the list boxes. As you move the selection cursor down the
"File Name" list, names are copied into the edit field, as shown in Fig 4.7. You
can type in file names, paths, or wildcard patterns.

If you click "OK" or press <enter> while a wildcard pattern is in the edit box,
a new selection is shown in the list box. For example, use the mouse or <tab>
key to return to the edit box, and type in "..\library\*.*", and then click "OK"

Fig 4.7 - Selecting files from the open box file list

Fig 4.8 - Selecting files with a wildcard file specification



WIN-PROLOG 4.2 - Win32 Programming Guide44

or press <enter>. The files menu will now contain a list of  library files, as shown
in Fig 4.8. Use the mouse or <tab> and cursor keys to select some files, as
shown in Fig 4.9, and then click "OK" or press <enter>. The full path names
of all the selected files will be returned as a list of atoms, as shown in Fig 4.10.

The savbox/5 predicate is virtually identical to opnbox/5, except that it can only
return a single file name, and it includes logic to prompt the user in the event
of an existing file name being chosen. Any paths you select during either dialog
will change your directory, even if you eventually cancel the dialog. To prove
this, type the command:

Fig 4.9 - Choosing some files from the open box file list

Fig 4.10 - Returning files name from the open box



WIN-PROLOG 4.2 - Win32 Programming Guide 45

?- chdir(Current). <enter>

This returns the name of the current working directory, as shown in Fig 4.11.

The Font Box

The fntbox/3 predicate provides WIN-PROLOG with a simple method for
selecting from the many fonts supported by Windows. It takes a title and initial
font description as input, displays some sample text and then allows the user to
select other fonts, returning the final selection. For example, type the command:

Fig 4.12 - A font box displayed by fntbox/3

Fig 4.11 - Confirming that the directory has changed



WIN-PROLOG 4.2 - Win32 Programming Guide46

?- fntbox('Choose a Font',[arial,32,3],Font). <enter>

A font box will be displayed as shown in Fig 4.12. Select other sizes, styles and
font names from the list, as shown in Fig 4.13, and then press "OK", at which
point your final selection will be returned as a list, as shown in Fig 4.14. You
will find out more about typefaces and fonts in Chapter 7.

Fig 4.14 - The chosen font name, size and style returned

Fig 4.13 - Choosing other font names in the font dialog



WIN-PROLOG 4.2 - Win32 Programming Guide 47

The Print and Print Setup Boxes

The prnbox/4 predicate gives WIN-PROLOG access to two related dialogs, one
for initialisating the printer device context at the start of a print job, and the other
for performing setup operations on the printer. The former dialog includes a
"setup" option that links to the latter dialog. For example, type the command:

?- prnbox([],Printer,Driver,Device). <enter>

This will display the print setup dialog, as shown in Fig 4.15. If you simply click

Fig 4.15 - The print setup dialog displayed by prnbox/4

Fig 4.16 - Printer information returned by prnbox/4



WIN-PROLOG 4.2 - Win32 Programming Guide48

on "OK", the current printer and driver information will be returned, as shown
in Fig 4.16. Note that to initiate a print job, you simply supply a document name
(an atom) as the first argument to prnbox/4, rather than an empty list as above.
For example, edit the previous command to include a document name:

?- prnbox('My Document',Printer,Driver,Device). <enter>

This will show the print dialog, as shown in Fig 4.17. It is best to select "Cancel"
right now, as shown in Fig 4.18, because otherwise you will commence a print
job, and printing is not discussed in detail until Chapter 12.

Fig 4.17 - The print dialog displayed by prnbox/4

Fig 4.18 - Result of cancelling the print dialog



WIN-PROLOG 4.2 - Win32 Programming Guide 49

The Status Box

This is a dialog which differs from the others described in this chapter in that it
is semi-modeless. While the status box is displayed, all WIN-PROLOG's other
windows and dialogs remain active (unless explicitly disabled), and WIN-
PROLOG continues processing unhindered, but the status box is automatically
destroyed whenever the system finishes processing a command and returns to
the console prompt. The status box can be called any number of times in a
computation: once on display, only its contents are updated on successive calls.
The status box is typically used to display information about the progress of a
long computation; for example, type the following command:

?- sttbox('Hello World',0), ms(repeat,E), E > 5000. <enter>

The reason for the call to ms/2, and checking the resulting time is greater than
5000ms, is that returning to the console prompt after completing a command
automatically destroys the status box. During the 5-second delay caused by the
repeat/0 calls within ms/2, the status box will be displayed as shown in Fig 4.19.
The value "0" requests a status box with the fixed "OEM" font and no WIN-
PROLOG bitmap. As with the abtbox/3 predicate, the style argument is simply
the handle of the font to use to display text. A special "font handle" of 65535
is used to select the OEM font and display the WIN-PROLOG logo. While the
status box is displayed, the underlying process can be interrupted by clicking on
the main window and pressing <ctrl-break> as usual.

Please note that the code to display the status box is contained in a separate file,
PRO386W.DLL. If this file is not available at run time, the sttbox/2 predicate
simply succeeds quietly without displaying anything.

Fig 4.19 - A status box displayed by sttbox/2



WIN-PROLOG 4.2 - Win32 Programming Guide50

The Busy (Hourglass) Cursor

Whenever a Windows program is busy, it typically disables input to its windows,
and indicates this state by showing the cursor as an "hourglass" shape. You can
set this cursor yourself, using the busy/1 predicate. It takes a single argument,
which is either "0" (not busy) or "1" (busy); this predicate can be used in
conjunction with the status box, or by itself during shorter computations.

When the hourglass cursor is displayed, all mouse and keyboard input is
disabled, preventing the user from performing any input functions. Like the
status box, this state is automatically cleared by certain system events such as
input from the console window, and once again, the underlying process can be
interrupted by pressing <ctrl-break>.

Find and Change Boxes

The two remaining dialogs are fundamentally different from the others described
in this chapter in that they are truly modeless, and signal results to WIN-PROLOG

using messages (see Chapter 10 for a detailed discussion of messaging). Both
are special, rather than general purpose, and are related to editing functions.
One is used to return a find string (fndbox/2) and the other to return find/replace
string pair (chgbox/3) for use in conjunction with these editing options. Because
of their single purposes, these dialogs have fixed titles and prompts.

Because the dialogs are modeless, the predicates fndbox/2 and chgbox/3 return
control immediately: their functions are to hide, display, or return information
from the relevant boxes. Either one, neither or both of these boxes may be
present on the screen at any one time, and the user may enter information or
move between these boxes and other windows at will.

When one of the action buttons is clicked, or <enter> is pressed, the find or
change box is disabled, preventing further interaction with the box, and a
message is sent to Prolog. In response, the message handler should call the
relevant find or change box predicate with variables to return the contents,
perform the action requested, and then reenable or hide the box as demanded.

The messages returned by both boxes are dependent upon their operating
mode: both can be used in a "find first" or "find next" state. The find box looks
identical in both cases, but the change box has two buttons which are greyed
out ("Change" and "Change+Find") in the "find first" state. Even if these dialogs
are enabled in the "find next" state, certain user actions, such as clicking the
mouse elsewhere on the screen, or changing the contents of the edit boxes or
radio buttons, will revert the dialogs to the "find first" state. The only other
difference between these states is that in one the "Find" button sends a "find first"
message, and in the other it sends "find next". Type in the following command:

?- fndbox(``,1), chgbox(`Hello`,`World`,1). <enter>



WIN-PROLOG 4.2 - Win32 Programming Guide 51

Note that the text parameters are all strings, not atoms: both these dialogs
require strings. Normally you should use empty strings, because these leave the
contents of the relevant edit control unchanged, which is desirable for modeless
dialogs.

Notice that control returns to Prolog immediately, as evidenced by the fact that
both boxes are shown on at once, and the "yes" and "?-" prompts have already
appeared. Move the change box to reveal the find box beneath it, as shown in
Fig 4.20. You will not be able to do anything particularly useful with these two
dialogs until you have read Chapter 10, which discusses messaging.

Fig 4.20 - Dialogs displayed by fndbox/2 and chgbox/3



WIN-PROLOG 4.2 - Win32 Programming Guide52

Chapter 5 - User Windows and Dialogs

This chapter describes the "user" and "dialog" windows of WIN-PROLOG,
covering their creation, manipulation and low level programming. These
windows provide the framework for building complex and dynamic dialogs
which go well beyond the capabilities of the standard dialogs.

User and Dialog Windows

In Chapter 4, we looked at a collection of standard dialogs, which provide easy
to use functions for a number of common system events. Apart from being able
to change text fields and (in some cases) the styles of these dialogs, while they
are useful in certain circumstances, they are limited in their range of applications.

WIN-PROLOG provides two types of user-defined window in which any arbitrary
dialog can be built. The first kind, "user" windows, are similar to "text" windows
(see Chapter 3) in that they form part of the Multiple Document Interface
("MDI"). The second kind, "dialog" windows, occur outside the MDI, and exist
on the desktop alongside WIN-PROLOG's "main" window and other Windows
applications.

User and dialog windows share an important common feature which distinguishes
them from text windows: when they are created, they contain no predefined
controls (these are added subsequently).

Creating a User Window

User windows are created with the wcreate/8 predicate. Its arguments give the
window its name, type, title, size and style. Let's try an example. If you are
already in WIN-PROLOG, exit back to Windows by selecting the "eXit" option
from the "Files" menu, or by typing the "halt." command. Next, start WIN-
PROLOG up, and type the following command:

?- wcreate(fred,user,`Freddie`,200,125,400,225,0). <enter>

In this, and all other examples, only type the characters in bold letters, and press
the named key for anything bracketed in <italics>.

This example will create a window known to Prolog as the atom "fred", and will
create it as a user window with the title "Freddie". The initial position will be at
(200,125) relative to the main window, and its size will be (400*225), as shown
in Fig 5.1. The style (0) is a dummy parameter here: in user windows, the style
argument is ignored.

Note the use of backwards quotes (`...`) around the title, denoting a string rather



WIN-PROLOG 4.2 - Win32 Programming Guide 53

than an atom. Throughout the Windows predicates, strings are used for general
text parameters. If you are not familiar with strings, and their relationships with
atoms and char lists, you should refer to Appendix B for further information.

Lack of Control

Because user windows do not contain any predefined controls, you will not be
able to type anything into your new window. Instead, click back on the console
window, and type the following command (bold letters only):

?- wcreate((fred,1),button,`Hello`,10,150,80,32,16'50010000).
<enter>

This will create a single button in your user window, with an ID of "1", and the
label "Hello", at position (10,10) and of size (80*32), as shown in Fig 5.2. The
style parameter has been given in hexadecimal notation (16'....), because this
makes it easier to compute complex styles. Do not worry about the meaning of
this number for now: styles are explained in greater detail in Appendix D;
controls will be examined in detail in Chapter 6.

Creating a Dialog Window

As you will probably have guessed by now, dialog windows are also created with
the wcreate/8 predicate. Two main differences exist between the creation of
MDI (text and user) and dialog windows: firstly, the given position is absolute,
and not relative to the main window, and secondly, the style parameter is
significant. As an example, type the following command:

Fig 5.1 - A user window created by wcreate/8



WIN-PROLOG 4.2 - Win32 Programming Guide54

?- wcreate(fred,dialog,`Freddie`,200,250,400,225,16'90c80000).
<enter>

Your existing user window called "fred" will be deleted, and replaced by a top
level dialog window called "fred", as shown in Fig 5.3. Again, the style has been
shown in hexadecimal notation, and once again, do not worry about its meaning
for now.

Fig 5.2 - A button added to a user window by wcreate/8

Fig 5.3 - A dialog window created by wcreate/8



WIN-PROLOG 4.2 - Win32 Programming Guide 55

Just as before, the new (dialog) window will have gained focus, but since it has
no controls, any attempt to type on the keyboard will be unsuccessful. Normally
you would create a dialog "invisible", add controls to it, and only display and set
focus to the finished result when ready to use it (see below for an example of how
to do this): in this mode of use, the inability to perform keyboard input will not
arise. For now, click back on the console, and add a button by typing the
following command:

?- wcreate((fred,1),button,`Hello`,10,150,80,32,16'50010000).
<enter>

Just as before, this will create a single button labelled "Hello", as shown in Fig
5.4. As you can see, user and dialog windows are superficially very similar.

Differences between User and Dialog Windows

At this point, we should say a few words about user and dialog windows. As was
briefly outlined above, the main difference between user and dialog windows is
that the former exist in the WIN-PROLOG MDI environment, vying for space
with text windows and the console within the main window, while the latter exist
on the top level desktop, and are for most intents and purposes independent of
WIN-PROLOG. Another difference between user and dialog windows is that the
former are fixed in style, while the latter is not.

A more subtle, but very important difference between these two types of window
is in the processing of keyboard input. Certain keys, such as <tab> and
<return> behave differently in controls contained in user and dialog windows.
For example, if you were to create a pair of edit controls in a user window, and

Fig 5.4 - A button added to a dialog window by wcreate/8



WIN-PROLOG 4.2 - Win32 Programming Guide56

then clicked on one of them, typing <tab> would insert a tab character into the
edit buffer of whichever control you were typing into; in a dialog window, the
<tab> key would cause you to switch between controls. Similarly, <return>, if
pressed in a control contained in a user window, inserts a new line character,
while in a dialog it causes the default push button (if present) to be activated.

In general, normal dialog behaviour is exhibited only by dialog windows. You
can put any number of controls, of any kind, into both user and dialog windows,
but in user windows you might need to use the mouse to move between controls
rather than the normal keyboard shortcuts. User windows are actually intended
as placeholders for graphics and other output features, so in general you should
use dialog windows when defining dialogs.

Creating Invisible Dialogs

Normally, you would not want users to see the individual steps used in building
a dialog, but would prefer them just to see the finished result. Apart from some
strange screen behaviour which can occur when you create a dialog which is
initially visible (see above), it simply looks messy to have a dialog appear, and
then add its controls visibly, one by one. The simple trick is to create an invisible
dialog, fill it with controls, and then show it only when you want to use it. To
see how to do this, type the following command:

?- wcreate(fred,dialog,`Freddie`,200,250,400,225,16'80c80000).
<enter>

Note that the hexadecimal parameter has changed from the previous example
(16'8... rather than 16'9...): this is important, as the missing bit is the visibility

Fig 5.5 - An invisible dialog created by wcreate/8



WIN-PROLOG 4.2 - Win32 Programming Guide 57

flag. Because you are reusing the name "fred", the existing dialog will be
destroyed before the new one is created. Since the new one is invisible, you will
simply be left in the console window, as shown in Fig 5.5. Now create the usual
button in the dialog:

?- wcreate((fred,1),button,`Hello`,10,150,80,32,16'50010000).
<enter>

The hexadecimal parameter here (16'5...) includes the visibility flag, but since
"fred" itself is invisible, you won't see anything new on the display. Visibility is
always with respect to a parent window, so a button could be invisible even if
its parent window were visible, but not vice versa. Now "turn on" the dialog with
the following command:

?- wshow(fred,1), wfocus((fred,1)). <enter>

This causes the dialog "fred" to be shown, and then sets focus to its button, as
shown in Fig 5.6.

Note the double parentheses on the second call: the focus predicate, wfocus/
1, has only one argument, the name of the window which is to gain focus. The
show predicate, wshow/2, has two arguments, the second of which allows you
to hide(0), show(1), minimise(2) or maximise(3) any window.

Manipulating Dialogs

So far, you have seen how to create dialogs, but not how to use them. Simply
having a dialog called "fred" on your screen does not enable you to perform any

Fig 5.6 - The finished dialog displayed and set into focus



WIN-PROLOG 4.2 - Win32 Programming Guide58

actions. We will look at the use of dialogs fully in Chapter 12: for now, we will
concentrate on their programmatic manipulation.

You have already seen how to create and recreate dialogs, and how to add
controls to them (controls are fully discussed in Chapter 6); you have also seen
how to display a hidden dialog and switch focus to one of its controls. There are
many more things you can do to a dialog, including getting or setting its title,
size, position or status: some of these are described in the following sections.

Changing Window Titles

When you create a dialog (or text window, user window or control), one of the
parameters you supply to wcreate/8 is the title. Once the window is created, you
can retrieve or even change the title, using the wtext/2 predicate. Click back on
the console window, and type the following command:

?- wtext(fred,X). <enter>

The "text" of a dialog window is its title, so Prolog will return the answer:

X = `Freddie`

Note that the parameter is returned as a string, using the backward quote
characters (`...`): this is the normal data type used for general text parameters
in WIN-PROLOG. Now type the command:

?- wtext(fred,`Bloggs`). <enter>

Because WIN-PROLOG's main window is on top of the dialog, you will not see

Fig 5.7 - Renaming a dialog with the wtext/2 predicate



WIN-PROLOG 4.2 - Win32 Programming Guide 59

Fig 5.8 - Renaming a button with the wtext/2 predicate

the result immediately: now click on the "fred" dialog, and you will see that the
title has changed, as shown in Fig 5.7. You can also change the text in controls
using the same predicate. Click back on the console window, and type:

?- wtext((fred,1),`World`). <enter>

Instantly, the text of the button "(fred,1)" will change from "Hello" to "World",
as shown in Fig 5.8. The wtext/2 predicate can be used to change the text of
any window, including the main and console windows. Try the command:

?- wtext(1,`Prolog Input/Output Window`). <enter>

The console window has no name as such, but is referred to as the integer "1":
this command will instantly change the title of the WIN-PROLOG console, as
shown in Fig 5.9. If you want to change the main window, use the integer "0"
in place of "1".

Resizing Windows

Normally it is considered bad practice to resize windows programmatically: part
of the Windows philosophy is that the user alone should dictate the layout of the
desktop. There are times, however, when you will want to check or set the sizes
of windows, perhaps when implementing a "cascade" or "tile" command, or
when restoring a screen layout saved in a previous session. The wsize/5
predicate allows you to check or set all four position and size parameters for a
given window. Type the command:

?- wsize(fred,L,T,W,D). <enter>



WIN-PROLOG 4.2 - Win32 Programming Guide60

Where variables are given as the parameters, WIN-PROLOG will simply return
the current values:

L = 200
T = 250
W = 400
D = 225

Fig 5.9 - Renaming the console with the wtext/2 predicate

Fig 5.10 - Resizing a dialog with the wsize/5 predicate



WIN-PROLOG 4.2 - Win32 Programming Guide 61

Fig 5.11 - Resizing a button with the wsize/5 predicate

You can change one or more of the parameters simply by including your desired
value in the call. For example, type:

?- wsize(fred,100,T,500,D). <enter>

In this call, you have set new values for the left position and width of the dialog,
while returning the existing top position and height, as shown in Fig 5.10. As
with wtext/2, you can apply wsize/5 to any window. Type the command:

?- wsize((fred,1),L,T,160,D). <enter>

This will double the width of the button "(fred,1)", and return its other three size
and position parameters, as shown in Fig 5.11.



WIN-PROLOG 4.2 - Win32 Programming Guide62

Chapter 6 - Control Windows

This chapter describes the use of "control" windows in WIN-PROLOG, covering
their creation, manipulation and low level programming. These windows
provide the working elements of complex and dynamic dialogs which go well
beyond the capabilities of the standard dialogs.

Control Windows

In Chapter 5, we looked at how to create "dialog" windows, which provide the
outer shell of all dialogs used in WIN-PROLOG, but (apart from a simple
example) we did not address the creation and manipulation of their buttons, list
boxes, edit and other controls.

In the Windows environment, all controls are windows in their own right, and
this leads to some very powerful properties. For a start, a great many Windows
functions can be applied equally to top level dialogs and to their controls,
considerably reducing the number of built-in predicates needed to implement a
full dialog management system. It also means that it is relatively easy to define
new, custom controls to augment the standard Windows set: one such extension
is built into WIN-PROLOG, but others could easily be defined in C/C++ using
the standard Windows SDK.

Control Classes

Windows provides several control "classes", each of which defines a family of
related control types. For example, the "button" class includes push buttons,
radio buttons, check boxes, and even group boxes, while the "edit" class includes
all kinds of single or multi line, scrollable or non-scrollable edit boxes. In this
chapter we will examine each class in turn; a formal list of the available classes
is given in Appendix E.

In order to look at controls, we need to create a dialog into which to put them.
For most purposes, "user" windows behave in the same manner as dialogs, but
have the advantage of being slightly easier to create and view, since they form
part of the MDI environment (see Chapter 5). Because of this, we will use a user
window rather than a dialog to demonstrate each of the individual controls. If
you are already in WIN-PROLOG, exit back to Windows by selecting the "eXit"
option from the "Files" menu, or by typing the "halt." command. Next, start WIN-
PROLOG up, and type the following command:

?- wcreate(fred,user,`Freddie`,200,125,400,225,0). <enter>

In this, and all other examples, only type the characters in bold letters, and press
the named key for anything bracketed in <italics>. This will create a user
window, ready for experimentation, as shown in Fig 6.1.



WIN-PROLOG 4.2 - Win32 Programming Guide 63

The Button Class

In Chapter 5 we briefly looked at the creation of a simple pushbutton while
experimenting with dialogs: now we will examine buttons further. Begin by
clicking back on the console window, and then type the following command to
create a standard pushbutton in the user window "fred" (bold letters only):

?- wcreate((fred,1),button,`Hello`,10,150,80,32,16'50010000).
<enter>

This will create a single button in your user window, with an ID of "1", and the
label "Hello", at position (10,10) and of size (80*32), as shown in Fig 6.2. The
style parameter has been given in hexadecimal notation (16'....), because this
makes it easier to compute complex styles. For now, all you need to know is that
the "5" digit includes two bits which mean "child window" and "visible", and the
"1" digit makes the control part of the "tab stop" cycle used to move between
controls in a dialog. Styles are explained in fully in Appendix D.

The least significant hexadecimal digit of the button style dictates the type of
button, as we shall now see. Now type the following command:

?- wcreate((fred,2),button,`There`,100,150,80,32,16'50010003).
<enter>

This time, we are creating a button with an ID of "2" (if we had reused "1", then
the existing button would have been destroyed before creating the new one).
Because the least significant digit of the style is "3", rather than "0", the new
button is created as an automatic checkbox, as shown in Fig 6.3. While we are
here, create two more buttons with the commands:

Fig 6.1 - A user window ready for experimentation



WIN-PROLOG 4.2 - Win32 Programming Guide64

?- wcreate((fred,3),button,`World`,190,150,80,32,16'50010009).
<enter>

?- wcreate((fred,4),button,`Outside`,280,150,80,32,16'50010009).
<enter>

The two new buttons have been created with IDs of "3" and "4" respectively, and
their style includes a least significant digit of "9", which creates them as

Fig 6.2 - A push button added to the user window

Fig 6.3 - A checkbox button added to the user window



WIN-PROLOG 4.2 - Win32 Programming Guide 65

automatic radio buttons, as shown in Fig 6.4. If you click on the user window,
you can experiment with pressing the buttons to see how they behave. Notice
how the checkbox alternates between a checked and unchecked state whenever
you click it, and how whenever you click on one of the radio buttons to select
it, the other is deselected.

Programming Button Controls

You can use generic window handling predicates to manipulate buttons: for
example, wtext/2 allows you to retrieve or change a button's label, and wsize/
5 allows you to get or set its size and position (see Chapter 5). Two more
predicates, one generic and one specific, are useful in handling buttons.

It is frequently desirable to disable buttons (and other controls) so that they
cannot be clicked or otherwise selected, for example when a given operation is
not possible at some particular moment. The wenable/2 predicate allows you
to get or set a button's enable status. Click back on the console window, and type
in the command:

?- wenable((fred,1),0). <enter>

This sets the enable status of "(fred,1)", the pushbutton currently labelled "Hello",
to "0" (false). The result is that the button is greyed out, as shown in Fig 6.5, and
can no longer be selected. You can reenable a button using "1" (true) as the
second argument.

All types of window can be enabled or disabled with wenable/2, but this is not
true of another predicate, wbtnsel/2, which is specific to buttons. This predicate

Fig 6.4 - Two radio buttons added to the user window



WIN-PROLOG 4.2 - Win32 Programming Guide66

allows you to get or set the selection status of a button. Type the command:

?- wbtnsel((fred,2),S). <enter>

This will return the result "S = 1" or "S = 0", depending upon whether the
checkbox "(fred,2)" is checked or unchecked respectively. You can force a new
selection state by supplying the second argument; for example, type:

?- wbtnsel((fred,3),0), wbtnsel((fred,4),0). <enter>

This will force both radio buttons, "(fred,3)" and "(fred,4)", to be simultaneously
deselected, as shown in Fig 6.6. A more surprising result will occur if you type:

?- wbtnsel((fred,3),1), wbtnsel((fred,4),1). <enter>

This forces both radio buttons to be simultaneously selected, as shown in Fig
6.7, something which is impossible using the keyboard or mouse. Notice how
the "automatic" behaviour of radio buttons is bypassed by the wbtnsel/2
predicate.

The Edit Class

The "edit" class is every bit as important as the button class, supporting as it does
all forms of typed keyboard input. Whenever you are able to type anything
directly into a Windows dialog, you are using an "edit" control window. Edit
controls process the keyboard in a standard way, and support both cut/paste
editing and single level undo, as well as straight typing. Just as with buttons, the
style parameter dictates in which of many types and variations a given edit

Fig 6.5 - Disabling a button with the wenable/2 predicate



WIN-PROLOG 4.2 - Win32 Programming Guide 67

control will be created. To clear up the button examples before we commence,
recreate the "fred" user window by typing the command:

?- wcreate(fred,user,`Freddie`,200,125,400,225,0). <enter>

Because you are reusing the name "fred", this will delete the existing user
window and all of its controls, once again leaving you with an empty user
window. Click back on the console, and type the command:

Fig 6.6 - Deselecting two radio buttons with wbtnsel/2

Fig 6.7 - Selecting two radio buttons with wbtnsel/2



WIN-PROLOG 4.2 - Win32 Programming Guide68

?- wcreate((fred,1),edit,`Hello`,10,150,80,32,16'50810000).
<enter>

This will create an edit control with an ID of "1", and the initial contents of
"Hello", at the bottom left hand corner of "fred", as shown in Fig 6.8. Notice how
the text argument denotes the contents of an edit window, since it has no title.
The style used here includes the same "5" as before, meaning "child window"
and "visible", as well as the same "1", meaning "tab stop". The extra "8" digit
simply puts a border around the edit control: without this, all you would see
would be the text "Hello", without any indication of the size of the field.

If you click on the new edit window, you will find that you can delete, insert into,
or append to the text in the window, up to but not exceeding the full width of
the window. Just as with buttons, the lower digits of the edit control style can
be used to change its behaviour. For example, replace the existing edit control
by clicking back on the console, and typing the command:

?- wcreate((fred,1),edit,`Hello`,10,125,80,64,16'50810005).
<enter>

This will create a slightly larger edit control, with two additional properties. The
least significant "5" digit contains two bits which mean "multiline" and "centred".
Click on the edit control and type into it. No one line may exceed its width, and
you will only be allowed to type up to three lines, as shown in Fig 6.9. Other
style bits allow you to enable horizontal and/or vertical scrolling, with or without
attendant scroll bars, to declare the window read-only, and more beside: see
Appendix D for a complete description of the available styles.

Fig 6.8 - An edit control added to a new user window



WIN-PROLOG 4.2 - Win32 Programming Guide 69

Programming Edit Controls

The predefined controls in text windows are in fact edit controls, their only
additional special property being that each one's size automatically tracks that
of its parent window. This simple acknowledgement means that you already
know how to program edit controls: see the detailed descriptions in Chapter 3.
We need not reexamine all the features here: suffice it to say that you can use
wedtfnd/6 to search for text in an edit control, wedtsel/3 to retrieve or make
selections, and wedttxt/2 to retrieve or replace selected text. Other functions,
such as wedtlin/4,  wedtpxy/4 and wcount/4 allow you to perform computations
on the contents of an edit control.

Just as with other windows, you can read or write the entire contents of an edit
control with wtext/2. For example, click on the console window and type the
command:

?- wtext((fred,1),`cat~M~Jand~M~Jmouse`). <enter>

This will replace the entire contents of the edit window "(fred,1)" with the three
lines given, as shown in Fig 6.10. Note you could have performed the same
replacement with the pair of calls:

?- wedtsel((fred,1),0,64000),
wedttxt((fred,1),`cat~M~Jand~M~Jmouse`). <enter>

The power of wedttxt/2 in conjunction with wedtsel/3 is that it allows you to
read or write portions of an edit window, rather than the entire contents as in
the case of wtext/2.

Fig 6.9 - An edit control with three lines of centred text



WIN-PROLOG 4.2 - Win32 Programming Guide70

Fig 6.11 - A listbox control added to the user window

The Listbox Class

Another widely used type of control is the list box, in which the user selects one
or more items, depending upon the style, simply by clicking on them with the
mouse, or by using the keyboard. Unlike edit controls, the user cannot actually
change the contents of a list box, but only its selection. Replace the existing edit
control with a list box by typing the command:

?- wcreate((fred,1),listbox,``,10,125,80,64,16'50a10002). <enter>

Fig 6.10 - Replacing text in an edit control with wtext/2



WIN-PROLOG 4.2 - Win32 Programming Guide 71

Because you have reused the ID code 1, the existing control "(fred,1)" is replaced
by an empty list box, as shown in Fig 6.11. The hexadecimal style here denotes
a visible child ("5") window, with a vertical scroll bar and border ("a"), which is
part of the tab stop cycle ("1") and which automatically sorts its entries ("2").
Once again, refer to Appendix D for a full description of the available styles.

Notice that the vertical scroll bar requested in the style is not actually visible: list
boxes only display this when they contain too many items to show without
scrolling. Notice also that the text parameter is given as the empty string: list
boxes are one of the few types of window which do not have a meaningful text
property.

Programming Listbox Controls

List boxes have a similar set of programming predicates to those provided for
edit controls. Whereas the latter are all named wedt???/n, the list box controls
use the convention wlbx???/n. To add items to a list box, you use the wlbxadd/
3: this predicate allows you to insert an item at a specific location in the list box,
or to insert it at the default position. Type the following command:

?- wlbxadd((fred,1),-1,`the`). <enter>

This will place the string "the" at the default location (denoted by "-1") in the list
box "(fred,1)", as shown in Fig 6.12. Once again, strings (`...`) are used for the
text argument, rather than atoms. Add four more strings by typing:

?- wlbxadd((fred,1),-1,`quick`). <enter>

?- wlbxadd((fred,1),-1,`brown`). <enter>

Fig 6.12 - An item added to a listbox by wlbxadd/3



WIN-PROLOG 4.2 - Win32 Programming Guide72

Fig 6.13 - Three more items added to the list box

Fig 6.14 - A scrollbar shown automatically when needed

?- wlbxadd((fred,1),-1,`fox`). <enter>

?- wlbxadd((fred,1),-1,`jumps`). <enter>

The list box will now contain five entries, given in alphabetical order, as shown
in Fig 6.13. Now add a sixth string by typing:

?- wlbxadd((fred,1),-1,`over`). <enter>



WIN-PROLOG 4.2 - Win32 Programming Guide 73

Notice how a scroll bar has suddenly appeared, as shown in Fig 6.14: this is
because you have now added too many items for the list box to display all at
once. Add one final string:

?- wlbxadd((fred,1),0,`zygote`). <enter>

This time, rather than inserting your string at the correct alphabetic position, it
is been placed at the beginning of the list box, as shown in Fig 6.15. You can
explicitly place any item anywhere, even in a sorted list box, by giving the
position (starting at 0) in which you want it. The special "position" of -1 means
simply "store at default position", which is either at the end, or in alphabetical
order, depending upon the list box style.

If you click on the list box, you can check that it works correctly in response to
mouse and keyboard selections. Having made a selection, say of the word
"brown", click back on the console window, and type the command:

?- wlbxsel((fred,1),1,S). <enter>

This will return the value "1" to indicate that item 1 (the second item) in list box
"(fred,1)" is currently selected. The value "0" is returned for a list box item which
is not selected. Now type the command:

?- wlbxsel((fred,1),2,1). <enter>

The selection in "(fred,1)" will change to highlight the third entry, as shown in
Fig 6.16. You can remove the highlight altogether from "(fred,1") with the
following command:

Fig 6.15 - An item put at a specific location by wlbxadd/3



WIN-PROLOG 4.2 - Win32 Programming Guide74

Fig 6.17 - The selection cleared with wlbxsel/3

?- wlbxsel((fred,1),0,0). <enter>

This "selects" the first item of the list box, but with an "unselected" status, and
effectively removes selection from the entire list box, as shown in Fig 6.17.

Further items can be added to, and existing ones removed from a list box at any
time. Type the following command:

Fig 6.16 - Selecting an item with the wlbxsel/3 predicate



WIN-PROLOG 4.2 - Win32 Programming Guide 75

?- wlbxdel((fred,1),0). <enter>

This removes the entry "0" (the first item) from this list box, as shown in Fig 6.18.
If you want to retrieve the text of a list box entry, use a command such as:

?- wlbxget((fred,1),1,T). <enter>

This will return the string "`fox`", which is the second item in the list box. A final
list box predicate, wlbxfnd/4, can be used to search the entries for a list box for
one matching the given string. Type the command:

?- wlbxfnd((fred,1),-1,`qui`,P). <enter>

This will search the entire list box for the first occurrence of an entry beginning
with the characters "qui", and will return its position (in this case, "4"). Note that
wlbxfnd/4 always begins the search from one place after the position you give,
which is why this example specifies "-1" (ie, start searching at "0"). This feature
means that, having found an entry, you can search for the next by directly using
the existing index as the new starting point.

List boxes can be created in a variety of styles, as enumerated in Appendix D,
and some of these styles allow multiple choice selections. All of the predicates
described in this section function identically in multi-choice list boxes, except for
wlbxsel/3. When you select or deselect an entry using this predicate in a single
choice list box, any existing selection is cancelled: this is not the case in a multi-
choice list box. There is a quick way of selecting or deselecting all entries in such
a list box: using a position of "-1" causes the given selection status to be applied
to all entries in a multi-choice list box.

Fig 6.18 - An item deleted with the lbxdel/2 predicate



WIN-PROLOG 4.2 - Win32 Programming Guide76

Fig 6.19 - A combobox added to the user window

The Combobox Class

Combo boxes are very similar to list boxes, being comprised of a single line edit
control and a single choice list box. Once again, there are many different styles
within this control class (see Appendix D). Replace the existing list box control
with a combo box by typing the command:

?- wcreate((fred,1),combobox,``,10,125,80,64,16'50a10002).
<enter>

Once again, you have reused the ID code 1, and the existing control "(fred,1)"
is replaced by your new combo box, as shown in Fig 6.19. The hexadecimal
style here denotes a visible child ("5") window, with a vertical scroll bar and
border ("a"), which is part of the tab stop cycle ("1") and which has a drop down
list box ("2").

Programming Combobox Controls

The similarity between combo boxes and list boxes extends to their programming.
The list box component of a combo box can be directly programmed with the
wlbx???/n predicates. For example, type the commands:

?- wlbxadd((fred,1),-1,`the`). <enter>

?- wlbxadd((fred,1),-1,`quick`). <enter>

?- wlbxadd((fred,1),-1,`brown`). <enter>



WIN-PROLOG 4.2 - Win32 Programming Guide 77

?- wlbxadd((fred,1),-1,`fox`). <enter>

You won't actually see anything yet, because the list box component of "(fred,1)"
is currently concealed. Now click on the drop-down icon of your list box, and
you will see the entries, as shown in Fig 6.20. Notice that they have not been
sorted this time: we did not request sorting in the style parameter when we
created this combo box.

Apart from being able to use the full set of list box predicates on a combo box,
you can use wtext/2 to set or read the contents of its edit control. Click back on
the console window, and type the command:

?- wtext((fred,1),`Hello`). <enter>

This will replace the contents of the edit control in "(fred,1)" with the text "Hello",
as shown in Fig 6.21. Note, however, that you cannot use the wedt???/n
predicates on a combo box: these are limited to true edit controls.

The Static Class

Static controls function mainly to provide labels and other non-editable
information in dialogs. Despite their description, they need not remain static:
you can alter their text, resize them, and otherwise manipulate them just like any
other window. Replace the combo box with a static control using the command:

?-
wcreate((fred,1),static,̀ one~M~Jtwo~M~Jthree ,̀10,125,80,64,16'50800001).

<enter>

Fig 6.20 - Items added to the combobox by wlbxadd/3



WIN-PROLOG 4.2 - Win32 Programming Guide78

Fig 6.22 - A static control added to the user window

This will replace the existing "(fred,1)" control with a static window, as shown
in Fig 6.22. The style here includes the visible and child bits ("5"), a border ("8"),
and centred text ("1"). The other styles are listed in Appendix D.

Programming Static Controls

Because of their simple text display functionality, there is not much to program
with static controls. The wtext/2 predicate can be used to read and write the
entire contents of a static window, and that's about it. Apart from labelling
neighbouring input fields, the main purpose of static controls is to provide

Fig 6.21 - The edit field of a combobox set by wtext/2



WIN-PROLOG 4.2 - Win32 Programming Guide 79

system-updatable information in status boxes and similar dialogs.

One curious anomaly is a static control style which treats its initial text parameter
as the name of an icon, rather than as text. Try the command:

?- wcreate((fred,1),static,`iconbds`,10,155,32,32,16'50000003).
<enter>

Because of the "3" digit in the style, this call results in a borderless display of the
"iconbds" icon (a shameless portrait of the author!), as shown in Fig 6.23. By
using a resource editor to add your own icons to WIN-PROLOG, you could easily
display them in dialogs using this technique.

The Scrollbar Class

The final standard control class is something of a curiosity. Many of the other
control class can include horizontal and/or vertical scroll bars, but in the
"scrollbar" class, the window itself is the scroll bar! By permitting scroll bars to
be created independently of other controls, Windows allows you to define
dialogs with scroll bars in other than the standard positions. Type the following
to replace the static control icon with a scroll bar:

?- wcreate((fred,1),scrollbar,``,10,125,80,64,16'50000004).
<enter>

As with list and combo boxes, scroll bars have no meaningful text parameter,
so the empty string has been given. The style bits here mean visible child ("5")
and horizontal bottom align ("4"), and the scroll bar is created as shown in Fig

Fig 6.23 - A static control displaying an icon



WIN-PROLOG 4.2 - Win32 Programming Guide80

Fig 6.24 - A scrollbar added to the user window

Fig 6.25 - Setting the scroll bar range and thumb position

6.24. The least significant digit of the style allows you to position scroll bars of
standard width at any of the four sides of the given window rectangle, or to create
scroll bars which fill the given area completely.

At this stage, any attempt to move the scroll bar "thumb" will fail, because the
scroll bar is created with a "range" of 0..0. Before you can use a scroll bar, you
must set its range with the wrange/4 predicate. Type the command:

?- wrange((fred,1),0,100,200). <enter>



WIN-PROLOG 4.2 - Win32 Programming Guide 81

This will set the range of the scroll bar "(fred,1)" to 100..200 inclusive. Now you
will find that if you click the scroll buttons or drag the thumb, it will move and
remain where you leave it.

Note that unlike other control window predicates, this (and wthumb/3, which
we are about to look at) are named in the generic window predicate style, and
not as wsbr.../n or somesuch. This is because both these predicates work not
only directly on scroll bar windows themselves (as in the above example), but also
on the scroll bar components of other windows. This explains the "0" parameter
in the call you have just made. The second argument of both wrange/4 and
wthumb/3 is an integer which specifies whether the given window is a scroll bar
itself ("0"), or whether you want the horizontal ("1") or vertical ("2") scroll bar
within the given window.

You can read the position of a scroll bar, or set a new one, using the wthumb/
3 predicate. Type the command:

?- wthumb((fred,1),0,150). <enter>

This will move the thumb of "(fred,1)" to its midway position, as shown in Fig
6.25, because you have set a range of 100..200 for this scrollbar. Again, note
the "0" parameter, which states that "(fred,1)" is a scroll bar in its own right, and
not a window containing a scroll bar. To read a scroll bar, simply leave the third
argument as a variable; for example, the call:

?- wthumb((fred,1),0,P). <enter>

will return the result P = 150 unless you have moved the thumb since the last
example.

The Grafix Class

This special class differs from all the others described here in that it is defined
by, and is unique to WIN-PROLOG. By itself, a grafix control looks just like a
static control, except that its text parameter will be ignored: as its name suggests,
this class provides support for graphics operations. Graphics are discussed in
detail in Chapter 12, but to have a brief glimpse at the possibilities, type the
command:

?- wcreate((fred,1),grafix,``,10,125,80,64,16'50800000). <enter>

As with list boxes, combo boxes and scroll bars, grafix windows have no
meaningful text parameter, so the empty string has been given. The style bits
here mean visible child ("5") and border ("8"), and the grafix control is created
as shown in Fig 6.26. Now type the command:

?- gfx_begin((fred,1)), gfx(ellipse(10,10,70,54)), gfx_end((fred,1)).
<enter>



WIN-PROLOG 4.2 - Win32 Programming Guide82

Fig 6.27 - An ellipse drawn in a grafix control

This call begins graphics on the named window, draws an ellipse, and then
finishes the graphics sequence, as shown in Fig 6.27. The gfx/1 predicate is the
hub of a family of around 50 predicates which support numerous graphics
operations, including the drawing of ellipses, rectangles, polygons, lines, bezier
curves, arcs, pie slices and segments, as well as text, metafiles, bitmaps and
icons, in full colour. All special operations on grafix controls are carried out by
predicates named gfx*/n, and together with gfx/1 itself, these are discussed in
detail in Chapter 12.

Fig 6.26 - A grafix control added to the user window



WIN-PROLOG 4.2 - Win32 Programming Guide 83

Chapter 7 - Typefaces and Fonts

This chapter describes the use of typefaces and fonts in WIN-PROLOG, covering
their creation, uses and housekeeping. These features enable dialogs and other
aspects of the user interface to be greatly customised for special effects or
personal preference.

Typefaces versus Fonts

Before commencing upon this chapter, we should take a few moments to
consider some of the concepts and terminology behind typefaces and fonts.
Considerable confusion exists in this area, thanks mainly to the somewhat
haphazard way in which type has been introduced to the mass world by
Windows in general, and desktop publishing in particular.

So far as this manual is concerned, a "typeface" is the name given to a particular
design of type, such as "Times Roman" or "Helvetica". A given typeface is usually
part of a "family", where the other members include variations of the basic
design at different "weights" (bold, heavy, light, etc) and "style" (italic, roman,
etc). It is worth noting that an "italic" version of a typeface is not necessarily just
a slanted (oblique) copy of the "roman" (normal) version: indeed, considerable
differences normally exist between roman and italic styles.

A "font" is most simply defined as a given typeface, with a given weight and style,
at a given size. Thus, "ITC Souvenir-Demi, 14 point" is a font, while "ITC
Souvenir" is the generic name of a typeface family, of which "ITC Souvenir-
Demi" is one particular typeface design.

Predefined Fonts

Now that the theory has been discussed, let's look at the practical side of things.
In Chapter 6, we looked at how to create "control" windows, which form the
building blocks of dialogs. With the exception of the "grafix" class, all text based
controls use, by default, a font called "ANSI Var Font", or more correctly, "Helv
13 pt", which specifies its typeface name and size. For reasons of convenience
and brevity, this font is referred to as the "ANSI" font throughout the rest of this
manual, because it maps onto the ANSI character set.

By default, the predefined controls in the console and "text" windows, use
another font, "Terminal 12 pt", which maps onto the IBM PC extended  ("OEM")
character set, and which is known as the "OEM" font throughout this manual.

As with all built-in objects, the OEM and ANSI fonts are known to Prolog
programs by number rather than by name, with "0" being the OEM font, and
"3" the ANSI font.



WIN-PROLOG 4.2 - Win32 Programming Guide84

Creating and Using a Font

The OEM and ANSI fonts are all very well, but Windows supports fully scalable
typefaces (TrueType), and comes with several of these as standard. The font
handling predicates in WIN-PROLOG allow you to create fonts based on these
typefaces, and then apply them to any control window. If you are already in WIN-
PROLOG, exit back to Windows by selecting the "eXit" option from the "Files"
menu, or by typing the "halt." command. Next, start WIN-PROLOG up, and type
the following command:

?- wfcreate(fred,arial,16,0). <enter>

In this, and all other examples, only type the characters in bold letters, and press
the named key for anything bracketed in <italics>. This will create a font known
to WIN-PROLOG as "fred", consisting of the "Arial" typeface at a size of 16 point,
and roman ("0") or "normal" style. The styles supported by WIN-PROLOG are
roman ("0"), italic ("1"), bold ("2") and bold-italic ("3").

At this point, nothing will appear to have happened, apart from Prolog
responding with the usual "yes". Now type the command (bold letters only):

?- wfont((1,1),fred). <enter>

After a brief moment, while Windows computes a screen version of Arial 16pt,
the console window "(1,1)" will change appearance to use the new font, as
shown in Fig 7.1. You can switch back to the default, OEM font using the
command:

?- wfont((1,1),0). <enter>

This will cause the console to revert to its normal state, as shown in Fig 7.2.

Care in Font Handling

You can create up to 64 named fonts at any one time, and can apply any one
of them to any individual control window, creating the potential of a screen
design consisting of huge numbers of different fonts. Apart from the stylistic
nightmare, which would be reminiscent of the early days of Mac desktop
publishing, there are some special considerations to bear in mind when creating
and using fonts.

In Windows, fonts are global objects. When your application (WIN-PROLOG)
creates a font, it uses up global (system-wide) memory resources, whether or not
that font is being used. While a font is in use, such as when it is assigned to a
control window, it must not be destroyed. Controls whose fonts have been
deleted will not behave properly, and can even cause General Protection Faults.



WIN-PROLOG 4.2 - Win32 Programming Guide 85

Because fonts are global, and might have been exported from your application
at run time, it is not always safe for WIN-PROLOG to destroy your fonts
automatically on exit. These resources are not released when your application
(WIN-PROLOG) terminates via the exit/1 predicate, and will remain locked in
memory until you exit from Windows itself. They are, however, closed down if
you terminate via either the halt/0 or halt/1 predicate.

If you have created some fonts within WIN-PROLOG, and have assigned these
to windows which will persist after the current session (such as those belonging

Fig 7.1 - The console window set to use the Arial 16 font

Fig 7.2 - The console window reset to the OEM font "0"



WIN-PROLOG 4.2 - Win32 Programming Guide86

to other applications or DLLs), you should terminate your session with the exit/
1 predicate: do not use halt/n, the "File/eXit" menu option, <alt-f4> or any
other trick to exit from Prolog.

To create a well behaved program, you should not allow fonts created within
WIN-PROLOG to be assigned to other applications, and should remove these
fonts during program termination. In this case, unless you have explicitly closed
all fonts, do not use exit/1 to quit, but use halt/n, the "File/eXit" menu option
or <alt-f4> to complete your session.

Closing a Font

You can close, or destroy, any font that you have created, providing it is not
currently in use (see above), by using the wfclose/1 predicate. So long as the
console window is once again using the OEM font, type the command:

?- wfclose(fred). <enter>

This will remove the font "fred" (Arial 16pt) from memory, freeing up its global
resources.

Note: if you create a new font with a name that is already being used for a font,
the existing definition is first destroyed, to avoid leaving unreferenced fonts in
Windows' global memory areas. The same care you take when closing a font
must be taken when re-creating one of a given name, since the new one will not
automatically be attached to any control that might have been using the previous
font with that name.

Enumerating Typefaces

Because of the widespread availability of TrueType typefaces, as well as fonts
for third-party type managers such as Adobe's "ATM" and Bitstream's "FaceLift",
the typefaces available will vary considerably between individual Windows
installations. A special built in predicate, misnamed fonts/1, returns the full list
of available typefaces. Type the command:

?- fonts(L). <enter>

A list of typeface names will be returned, as shown in Fig 7.3 (the list will vary
depending upon which typefaces are installed in your Windows system). Now
prepare to create and show fonts based on some of these faces. Create a window
by typing the following command:

?- wcreate(fred,user,`Freddie`,200,125,400,225,0). <enter>

This will create a user window, ready for experimentation, as shown in Fig 7.4.
Click back on the console window, and type the following three commands to
create three buttons:



WIN-PROLOG 4.2 - Win32 Programming Guide 87

?- wcreate((fred,1),button,`Hello`,10,150,80,32,16'50010000).
<enter>

?- wcreate((fred,2),button,`There`,100,150,80,32,16'50010000).
<enter>

?- wcreate((fred,3),button,`World`,190,150,80,32,16'50010000).
<enter>

Fig 7.3 - Returning typefaces with the fonts/1 predicate

Fig 7.4 - A user window ready for experimentation



WIN-PROLOG 4.2 - Win32 Programming Guide88

At the end of these three commands, you should have created three buttons in
"fred", with IDs of "1", "2" and "3" respectively, as shown in Fig 7.5. Now select
three typeface names from the list displayed by the fonts/1 predicate above, and
create fonts based on them, for example:

?- wfcreate(font1,arial,20,2). <enter>

?- wfcreate(font2,'times new roman',20,0). <enter>

?- wfcreate(font3,'courier new',20,3). <enter>

If the typeface names used in these examples are not present on your system,
use names which are. Note that the font names are not case sensitive, so you
can use any combination of upper and lower case letters when creating a font,
but any embedded spaces must be included literally. Remember to quote the
name if beginning with an uppercase letter or if it contains spaces, as in the
"font2" and "font3" cases above. Now assign each of the new fonts to one of the
buttons in "fred" with the following commands:

?- wfont((fred,1),font1). <enter>

?- wfont((fred,2),font2). <enter>

?- wfont((fred,3),font3). <enter>

At the end of these three commands, the buttons in "fred" will display with the
new fonts, as shown in Fig 7.6. If any of the typefaces you requested were
unavailable, Windows will supply a font it considers to be equivalent.

Fig 7.5 - Three buttons added to the user window



WIN-PROLOG 4.2 - Win32 Programming Guide 89

Checking Font Data

You can retrieve the typeface, size and style data for any font that you have
previously created using the wfdata/5 predicate. For example, type the
command:

?- wfdata(0,N,P,S,B). <enter>

This call will return the results "N = 'Terminal'", "P = 12", "S = 0"  and "B = 10",
to report that the OEM font ("0") is actually called "Terminal 12pt". The final
parameter is the "baseline" offset, and is useful in graphics programming. This
predicate is very useful for checking that you have created a font successfully.
Assuming the font creation example in the previous section worked, the call:

?- wfdata(font1,N,P,S,B). <enter>

should return the results "N = 'Arial'", "P = 19", "S = 2" and "B = 15". Note that
the point size, "19", is actually one less than you asked for: even with scaleable
typefaces, Windows cannot always provide an exact match to your requirements.
Now create a font based on a typeface which is not on your system, using the
command:

?- wfcreate(fred,loadsarubbish,20,0). <enter>

The Windows call will apparently succeed, but you can test the actual result by
typing the following call:

?- wfdata(fred,N,P,S,B). <enter>

Fig 7.6 - Three buttons each set to use a different font



WIN-PROLOG 4.2 - Win32 Programming Guide90

This will return the expected values of P, S and B, but the name will be returned
as "N = 'Times New Roman'" or some other default font, showing that Windows
could not find "LoadsaRubbish" on the system.

You can also test the print width and height of a line of text using wfsize/4. Type
the command:

?- wfsize(font1,`Hello World`,W,H). <enter>

This will return the results "W = 92" and "H = 19", to say that in the "Arial Bold
20pt" font ("font1"), the given string has a width of 92 units and a height of 19
units. One "unit" corresponds to one screen pixel, which in turn is roughly
equivalent to one point.

Note that, as elsewhere in the WIN-PROLOG's Windows predicates, name
parameters (such as the font and typeface name) are given as atoms, and general
text parameters as strings (`...`).

The Font Dictionary

A final font handling predicate, wfdict/1, lets you return the list of fonts currently
defined in WIN-PROLOG. The call:

?- wfdict(D). <enter>

should return the list "D = [font1,font2,font3,fred]". If you are writing your own
clean-up code, to remove fonts directly before quitting from an application, you
can use this dictionary to remind you which fonts need closing.

Graphics Programming

Throughout this chapter, we have looked at fonts in connection with control
windows: while it is nice to be able to use, say, "Arial 20pt Bold" in the WIN-
PROLOG console window, this type of font handling is not particularly flexible.
In particular, no one standard Windows control may contain more than a single
font at any one time, and you are limited to black-on-white, or whatever system-
wide colour combination is currently set for your Windows installation.

In Chapter 12, another use of fonts is discussed: a whole set of graphics
predicates provides the ability to plot complex shapes, as well as metafiles,
bitmaps, icons, and, of course, text strings. Fonts created as described in this
chapter can be used, in any combination, and in any colour or mix of colours,
to provide fully programmable text output in "grafix" control windows.



WIN-PROLOG 4.2 - Win32 Programming Guide 91

Chapter 8 - Menus

This chapter describes the use of menus in WIN-PROLOG, covering their
creation, programming and housekeeping. These features enable complete
customisation of the main menu bar, including the replacement of existing
menus and items as well as the creation of new ones.

Predefined Menus

Despite appearances, there is only one truly predefined menu in WIN-PROLOG:
the "Window" menu on the main menu bar. All other menus, including "File",
"Edit", etc., are actually created and maintained using standard Prolog code.
This means that, apart from "Window", you can create and maintain any
number of menus on the menu bar.

The Window menu is programmed in C, and is maintained internally both by
WIN-PROLOG and the Windows MDI environment. It is a standard component
of a Windows MDI application, so its predefined behaviour should not be a
problem in your own programs. Having said that, it is possible to add or remove
entries from this menu, or even to remove the menu itself from the menu bar,
but the results of doing this can be unpredictable, and this practice is not
recommended.

Creating a Menu

Just as with windows, dialogs, controls and fonts, menus are created with a
name which will be used thereafter to refer to the menu. If you are already in
WIN-PROLOG, exit back to Windows by selecting the "eXit" option from the
"Files" menu, or by typing the "halt." command. Next, start WIN-PROLOG up,
and type the following command:

?- wmcreate(fred). <enter>

In this, and all other examples, only type the characters in bold letters, and press
the named key for anything bracketed in <italics>. This will create a menu
known to WIN-PROLOG as "fred", and which will initially be empty: no other
action will occur.

Adding Items to a Menu

Menus are built up using a series of calls to the wmnuadd/4 predicate, in a
fashion similar to the filling of a list or combo box (see Chapter 6). Add an item
to your new menu by typing the command (bold letters only):

?- wmnuadd(fred,-1,`&Freddie`,1000). <enter>



WIN-PROLOG 4.2 - Win32 Programming Guide92

This adds an item to the menu "fred", at the end ("-1"), using the string "Freddie",
and a message code of "1000". You can specify the insertion position for any
item you add to any menu, or use "-1" to append to the menu. Position
numbering starts at 0, so use this value to place an item at the start of a menu.

As with all general text parameters in WIN-PROLOG, the item name is given as
a string (`...`); just like the text labels of control windows (see Chapter 6), the
ampersand ("&") character can be used to precede the character you want to use
for keyboard selection within the menu.

The final parameter can be an integer, as shown above ("1000"), or the handle
(Prolog name) of another menu: you will see an example of this in a moment;
the integer can be any 16-bit value greater than 999, and is used to identify the
menu command at run time. Now add two more items by typing:

?- wmnuadd(fred,-1,`&Maria`,1001). <enter>

?- wmnuadd(fred,-1,`&David`,1002). <enter>

So far, nothing has happened (apart from Prolog responding with "yes"
prompts). To see (and use) your new menu, you must add it to the main WIN-
PROLOG menu bar. Since a menu bar is simply a menu in its own right, you
use wmnuadd/4 here too. Type the command:

?- wmnuadd(0,3,`Fre&d`,fred). <enter>

Once again, the menu bar, which is a built-in feature, has a number ("0") rather
than a name. Note that the fourth argument is an atom, and not an integer: this
is the name of the menu you have been creating ("fred"). At this point, a new
item will appear on the menu bar, as shown in Fig 8.1.

Note the placement of the "&" character in this example: by using "`Fre&d`"
rather than "`&Fred`", we have chosen to use "<alt-D>" as the hotkey for this
menu, not "<alt-F>", which is already in use by the "File" menu. Click on the
"Fred" menu, and it will pull down, as shown in Fig 8.2.

Removing Items from a Menu

Just as you add menu items using wmnuadd/4, you can remove them using the
wmnudel/2 predicate. To remove your addition to the menu bar, type the
command:

?- wmnudel(0,3). <enter>

Your menu will disappear from the menu bar, as shown in Fig 8.3. You have
not destroyed the menu "fred" itself, but have simply unhooked it from the menu
bar.



WIN-PROLOG 4.2 - Win32 Programming Guide 93

Care in Menu Handling

You can create an indefinite number of named menus at any one time, and can
attach any of them to any other, creating deeply nested menus. As with fonts
(see Chapter 7), there are some special considerations to bear in mind when
creating and using menus.

In Windows, menus are global objects. When your application (WIN-PROLOG)
creates a menu, it uses up global (system-wide) memory resources, whether or

Fig 8.1 - Creating a menu and adding it to the menu bar

Fig 8.2 - Pulling down the newly added menu



WIN-PROLOG 4.2 - Win32 Programming Guide94

not that menu is being used. While a menu is in use, such as when it is attached
to the WIN-PROLOG menu bar, it must not be destroyed. Menus whose
submenus have been deleted will not behave properly, and can even cause
General Protection Faults.

Another problem can arise when defining nested menus: if any circular
reference are made, Windows will crash the first time the menu is activated.
Menus can be nested quite deeply, but not infinitely so.

If you have created some menus within WIN-PROLOG, and have assigned these
to windows which will persist after the current session (such as those belonging
to other applications or DLLs), you should terminate your session with the exit/
1 predicate: do not use halt/n, the "File/eXit" menu option, <alt-f4> or any
other trick to exit from Prolog.

To create a well behaved program, you should not allow menus created within
WIN-PROLOG to be assigned to other applications, and should remove these
menus during program termination. In this case, unless you have explicitly
closed all menus, do not use exit/1 to quit, but use halt/n, the "File/eXit" menu
option or <alt-f4> to complete your session.

Closing a Menu

You can close, or destroy, any menu that you have created, providing it is not
currently in use (see above), by using the wmclose/1 predicate. So long as the
menu bar has been restored to its initial state, type the command:

?- wmclose(fred). <enter>

Fig 8.3 - Removing a menu from the menu bar



WIN-PROLOG 4.2 - Win32 Programming Guide 95

This will remove the menu "fred" from memory, freeing up its global resources.

Note: if you create a new menu with a name that is already being used for a
menu, the existing definition is first destroyed, to avoid leaving unreferenced
menus in Windows' global memory areas. The same care you take when closing
a menu must be taken when re-creating one of a given name.

Checking Menu Entries

You can retrieve the definition of an entry in any menu that you have previously
created using the wmnuget/4 predicate. Before you can do this, create a couple
of menus to experiment with by typing the following commands:

?- wmcreate(menu1). <enter>

?- wmcreate(menu2). <enter>

These commands will create two empty menus: now add some items to them
with the commands:

?- wmnuadd(menu1,-1,`&Item1`,1000). <enter>

?- wmnuadd(menu2,-1,`&Item2`,2000). <enter>

?- wmnuadd(menu1,-1,`&More...`,menu2). <enter>

Note how the last command uses a menu handle, "menu2", in place of an integer
message number: this links this menu to "menu1", creating a nested menu. Be
careful not to add a menu to itself, or to add one menu to another and then the
second back to the first: as noted above, any such circular reference can cause
Windows to crash. If you have done this by mistake, simply recreate "menu1"
and "menu2" following the example above more carefully. Now add this nested
menu to the main window menu bar by typing the following command:

?- wmnuadd(0,3,`&Nest`,menu1). <enter>

Your new menu will appear, with "N" as its highlighted hotkey, as shown in Fig
8.4. If you click on it with the mouse, you will be able to follow it into the
submenu, as shown in Fig 8.5. Now that you have checked that your menu is
correctly defined, type the command:

?- wmnuget(menu1,0,S,I). <enter>

This will return the values "S = `&Item1`" and "I = 1000", which comprise the
string and integer message number of the first entry (number "0") from the menu
"menu1". Now type the command:



WIN-PROLOG 4.2 - Win32 Programming Guide96

?- wmnuget(menu1,1,S,I). <enter>

This will return the values "S = `&More...`" and "I = menu2", the second entry
(number "1") from the menu. Because an atom has been returned in "I", rather
than an integer, you can tell that this item is a menu handle, and refers to a
submenu. By using wmnuget/4 recursively on any menu handles that are
returned, you can traverse the entire hierarchy of any nested menu.

Fig 8.4 - Creating and installing a nested menu

Fig 8.5 - Displaying the newly added nested menu



WIN-PROLOG 4.2 - Win32 Programming Guide 97

Separators, Checkmarks and Grey Menu Items

You can add various features to your menus to improve the layout, mark entries
as "selected", or "disable" (grey out) inappropriate choices. Type the following
command:

?- wmnuadd(menu1,1,``,0). <enter>

This adds a separator to position "1" on "menu1". Separators are denoted by
a message number of zero, and the text parameter is ignored. Click on the "Nest"
menu, and you will see the new separator, as shown in Fig 8.6. You can put as
many separators as you like in a menu, and since you have added them with
wmnuadd/4, you can delete them with wmnudel/2, just like any other menu
item.

Checkmarks are the tick characters that are used to indicate the toggle states,
and can be added to any non-separator menu item with the wmnusel/3
predicate. Type the command:

?- wmnusel(menu1,0,1). <enter>

This will set the toggle state of the first item ("0") in "menu1" to "1", or enabled,
showing a tick alongside the text string for this item. Click on the "Nest" menu,
and you will see the checkmark alongside "Item1", as shown in Fig 8.7. You can
clear a checkmark by giving "0" as the third argument, or simply return the
current setting by calling wmnusel/3 with a variable as the third argument.

Menu items can be disabled and enabled: when disabled, they are normally
"greyed out", indicating that they cannot be used. Type the following command:

Fig 8.6 - Displaying the menu to show the new separator



WIN-PROLOG 4.2 - Win32 Programming Guide98

?- wmnunbl(menu1,2,0). <enter>

This sets the enable state of the third item ("2") in "menu1" to "0": note that
separators count as menu items, so the "More..." submenu, which was the
second item in the menu, became the third item when you added a separator.
Click on the "Nest" menu, and you will see that the "More..." item has been
greyed out, preventing you from selecting it, as shown in Fig 8.8. You can
reenable a menu by giving "1" as the third argument, and even disable an entry
without greying it by giving "2". To return the existing enable state, call
wmnunbl/3 with a variable as the third argument.

Fig 8.7 - Displaying the menu to show a checked item

Fig 8.8 - Displaying the menu to show a greyed item



WIN-PROLOG 4.2 - Win32 Programming Guide 99

The Menu Dictionary

A final menu handling predicate, wmdict/1, lets you return the list of menus
currently defined in WIN-PROLOG. The call:

?- wmdict(D). <enter>

should return the list "D = [menu1,menu2]". If you are writing your own clean-
up code, to remove menus directly before quitting from an application, you can
use this dictionary to remind you which menus need closing.



WIN-PROLOG 4.2 - Win32 Programming Guide100

Chapter 9 - General Window Handling

This chapter describes the general handling of windows in WIN-PROLOG,
covering their handles, linking and styles. These features are applicable to all
window types discussed so far, and provide considerable programming power.

Window Handles

Back in Chapter 3 we looked briefly at window handles, in a section called
"Windows and Controls". Throughout the subsequent chapters, use was freely
made of window handles, but without ever fully explaining their structure and
significance. This chapter, which is all about the low level linking and manipulation
of windows, is the natural place in which to examine window handles fully.

Window handles in WIN-PROLOG programs can be in any one of three data
types: atoms, integers and conjunctions. When you create a Multiple Document
Interface (MDI) or dialog window, you assign to it an atom which is used as its
identifier or handle, for example:

?- wcreate(fred,...

creates a window with the handle "fred". When you create a control window, you
use a handle which is a conjunction of the parent window's handle and an integer
ID, for example:

?- wcreate((fred,123),...

creates a control within the named window "fred", using an ID of 123. All
windows other than those you have created yourselves have integer handles
only: these include WIN-PROLOG's predefined windows, as well as any windows
belonging to other applications. There are two predefined integer handles in
WIN-PROLOG, and these are listed in Table 9.1.

Table 9.1 - Predefined Window Handles

Integer Meaning

0 The Main Window
1 The Console Window

The console window ("1") includes a predefined "edit" control, whose ID is also
"1". This is the same as the ID used in "text" windows created as part of the MDI
(see Chapter 3). Just as you would refer to a control of ID "123" in a window
called "fred" using the conjunction "(fred,123)", so you should refer to the
console window's edit control as "(1,1)".



WIN-PROLOG 4.2 - Win32 Programming Guide 101

External Windows

Windows belonging to WIN-PROLOG have names which are either atoms (MDI
and dialog windows), integers (predefined windows) or conjunctions (controls).
It is also possible to access and manipulate windows belonging to applications
other than WIN-PROLOG, and this is done using the "raw" window handle for
the window concerned. Raw handles are simply 32-bit integers which are
passed directly on to Windows.

You can distinguish between integer handles belonging to external windows and
those belonging to WIN-PROLOG's predefined windows by value: all raw
window handles have values greater than "1", which is the highest numbered
integer handle used for predefined windows.

Note that all external windows, whether top level, part of another application's
MDI, or controls, are known simply by a raw integer: the conjunction data type
is not used for external controls.

Logical and Raw Handles

All windows, including those you create, are known to the underlying Windows
operating environment by 32-bit, raw handles: the atom and conjunction
handles that you assign when you create windows are merely "logical" handles
that must be translated internally by WIN-PROLOG before being passed to
Windows. Conversely, whenever Windows wants to pass a window handle back
to WIN-PROLOG, an attempt is made to convert the raw handle back to its
logical counterpart. If this attempt fails, the raw handle is returned directly. You
can perform the conversion between logical and raw handles explicitly using the
wndhdl/2 predicate. If you are already in WIN-PROLOG, exit back to Windows
by selecting the "eXit" option from the "Files" menu, or by typing the "halt."
command. Next, start WIN-PROLOG up, and type the following command:

?- wndhdl(1,R). <enter>

In this, and all other examples, only type the characters in bold letters, and press
the named key for anything bracketed in <italics>. This returns the value "R"
bound to an integer which is the raw handle of the console window ("1"), as
shown in Fig 9.1. You can perform the reverse translation by typing the
command (bold letters only):

?- wndhdl(L,1234). <enter>

where "1234" is the number that was returned by the first example; this will
return the value "L = 1". As was mentioned above, WIN-PROLOG automatically
returns logical window handles wherever possible, but there are times when you
might want to perform the translation yourself: these include passing window
handles to and from the winapi/4 predicate (see Appendix G), where the logical



WIN-PROLOG 4.2 - Win32 Programming Guide102

name would be meaningless, as well as some sophisticated multi-nested window
programming techniques.

Finding an External Window Handle

There are several ways in which to find the handle of an external window. The
first will occur from time to time by accident, using predicates such as wfocus/
1 which return window handles to WIN-PROLOG: if this predicate is called while
another application is in focus, the handle returned will be the raw handle of the
application, MDI window or control currently in focus. In such circumstances,
your application will typically not wish to perform any processing on the
resultant handle; indeed, in Appendix C you will see an example of some code
which uses wfocus/1 to suspend further processing until the user switches focus
back to WIN-PROLOG.

Occasionally you might wish intentionally to access the handle of another
window, and there are two main predicates which allow you to do this. The first,
wfind/3, allows you to search the desktop for a window of the given name and
class. For example, type the command:

?- wfind('',`WIN-PROLOG - [Console]`,L). <enter>

This will search for a window labelled "WIN-PROLOG - [Console]", returning the
handle "0" in "L", as shown in Fig 9.2. This is of course simply the WIN-PROLOG

main window, but you can use this trick to find windows belonging to any
currently running application. The first argument of wfind/3 is an atom which
is the name of the window class: if you don't know this name, you should give
an empty atom, as here. The second is simply its title which, in common with
all general text parameters, is a string (`...`).

Fig 9.1 - Returning the raw handle of the console window



WIN-PROLOG 4.2 - Win32 Programming Guide 103

The second window finding predicate, wlink/3, allows you to link to other
windows from any given window handle. Click back on the console window and
type the command:

?- wlink(0,5,E). <enter>

and you will get the handle "(0,1)" returned in "E", as shown in Fig 9.3. The value
"5" in the second argument of wlink/3 means "first child of", and what you have
now got is the handle of WIN-PROLOG's MDI client window. You can link to the
parents, siblings, children and owners of any window, using the values listed in
Table 9.2.

Table 9.2 - Window Linking Parameters

Integer Meaning

-1 return parent of window
0 return first sibling of window
1 return last sibling of window
2 return next sibling of window
3 return previous sibling of window
4 return owner of window
5 return first child of window

Window Styles

When creating dialog and button windows, you will have used various 32-bit
integer styles to define the exact appearance and behaviour of these windows.
You can retrieve the style of an existing window, or even change it, with the

Fig 9.2 - Finding an application's top level window



WIN-PROLOG 4.2 - Win32 Programming Guide104

wstyle/2 predicate. Care should be taken when changing window styles,
because many styles are incompatible with certain windows. The most common
use of this predicate is to change the appearance of control windows, say from
"pushbutton" to "defpushbutton". Click back on the console window and type
the following command:

?- wcreate(fred,user,`Freddie`,200,125,400,225,0). <enter>

This creates a user window, as shown in Fig 9.4. Now click back on the console
window and add some buttons to it with the following commands:

Fig 9.3 - Linking to a child window from a parent window

Fig 9.4 - A user window read for experimentation



WIN-PROLOG 4.2 - Win32 Programming Guide 105

?- wcreate((fred,1),button,`Hello`,10,150,80,32,16'50010000).
<enter>

?- wcreate((fred,2),button,`There`,100,150,80,32,16'50010000).
<enter>

?- wcreate((fred,3),button,`World`,190,150,80,32,16'50010000).
<enter>

Fig 9.5 - Three buttons added to the user window

Fig 9.6 - Changing a button style with wstyle/2



WIN-PROLOG 4.2 - Win32 Programming Guide106

These commands will have added three buttons to the user window "fred", as
shown in Fig 9.5. Now change the appearance of the first button from that of
an ordinary "pushbutton" to that of a default "defpushbutton" by typing:

?- wstyle((fred,1),16'50010001). <enter>

The first button, "(fred,1)", will be redrawn with a thicker, "default" border, as
shown in Fig 9.6. Now type the command:

?- wstyle((fred,2),16'50010003). <enter>

This will change the appearance and behaviour of the second button, "(fred,2)",
to an "autocheckbox", as shown in Fig 9.7. It is not recommended to perform
changes of this kind, it being far safer to create a new control of the desired new
type. Uses of wstyle/2 should be limited to "borrowing" the a style of an existing
window for use when creating a similar new one, or toggling buttons between
the "pushbutton" and "defpushbutton" styles.

Window Size and Area

In Chapter 5 you saw the wsize/5 predicate, which is used to test or set the size
of a window: there is a related predicate, warea/5, which returns the size and
position of a window's active, or "client" area. The overall size of a window (as
handled by wsize/5) includes the space taken up by its menus, scroll bars and
borders. The client area is the portion of the window which is available for
controls and other objects. Type the command:

?- warea(0,X,Y,DX,DY),
wcreate(fred,button,`BIG`,X,Y,DX,DY,16'90010000). <enter>

Fig 9.7 - Changing a button type with wstyle/2



WIN-PROLOG 4.2 - Win32 Programming Guide 107

Fig 9.8 - A giant button window on the desktop

This will pick up the size and position of the main window's client area, and
create a button of this exact size. Note that because the button has been given
an atom ("fred") as its handle, and that the style includes the popup rather than
child bit ("9" rather than "5"), it is created as a top level window in its own right,
as shown in Fig 9.8. Although not very useful, this particular example does help
impress that controls are windows just like any other. Click back on the main
window and type the command:

?- wclose(fred). <enter>

to close the giant desktop button.

Window Classes

Every window created in the Windows environment belongs to one or another
class. When you create windows, you specify the class as the second argument
to wcreate/8, for example:

?- wcreate((fred,123),edit,...

creates a window of the "edit" class. You can find out the class of any given
window with the wclass/2 predicate. For example, type the command:

?- wclass(0,C). <enter>

This will return the result "C = 'Main'", giving the class name for the WIN-
PROLOG main window ("0"). This is one of several classes defined internally by
WIN-PROLOG, which also include the console window ("Cons") and of course
"Grafix" controls.



WIN-PROLOG 4.2 - Win32 Programming Guide108

Chapter 10 - Windows Messages

This chapter describes the handling of Windows messages by WIN-PROLOG,
covering the programming of responses to menus, modal and modeless dialogs.

Windows and Messages

As an operating system, Windows depends on message passing to perform
virtually all functions. Windows messages are simply packets of information
which may be passed between processes, containing commands, parameters,
or notification of actions that are about to be or have already been performed.

Most messages are of a very basic, low-level nature, and would be of little or no
interest to the Prolog programmer. For example, if the mouse is moved across
the screen, literally hundreds of messages are generated. Some just report each
change of mouse position, others notify windows that their space has been
encroached upon by the mouse, and yet others alert of changes in cursor shape,
window borders, and so forth: even a simple keystroke generates around half
a dozen distinct messages.

Prolog and Messages

It would not make sense to try to process all messages in WIN-PROLOG: for one
point, a great many messages are simple notifications or acknowledgements
needed by low level systems code, and all Prolog would want to do is ignore them
and pass them on; for another, the sheer number of messages swilling about in
Windows would knock the performance of WIN-PROLOG flying if every one
caused a Prolog-level interrupt!

It is equally clear that some messages must be passed on to WIN-PROLOG,
otherwise it would not be possible for Prolog programs to react to certain user
actions. Messages of this kind work by interrupting the execution of a Prolog
program, transferring control to a message handler, which is itself a Prolog
program. As soon as a message occurs, further messages are disabled while the
message handler performs whatever operations are necessary. When it is
finished, the message handler reenables the message queue and returns control
to the original program.

Messages passed to Prolog fall into several groups, including menu selections,
modal and modeless dialogs, window state changes and graphics events.

Anatomy of a Message

A message is a combination of four pieces of information: the first of these is
a window handle identifying the source of the message, the second is a 16-bit



WIN-PROLOG 4.2 - Win32 Programming Guide 109

integer indicating the message number or type, the third is a 32-bit integer
containing supplementary data, and the fourth is the Prolog goal that was
interrupted by the message. You will be using all four components of the
message when programming the various hooks and handlers described in later
sections.

In general, the numbering and meaning of messages is entirely up to the
programmer, but there are four groups of predefined message numbers, and
these are outlined in the following sections.

Predefined Modeless Dialog Messages

The first group of predefined messages is generated by the two system modeless
dialogs, namely the "find" and "change" boxes; these messages are numbered
between 90..98, and each message refers to one of the action buttons in the
dialog. Depending upon whether the dialog is in its "find first" or "find next" state
(see Chapter 4), the "Find" button returns one of two different messages. The
modeless dialog messages are listed in Table 10.1.

Table 10.1 - Messages Generated by Modeless Dialogs

Prolog Atom Integer Meaning

MSG_FBCLOSE 90 The Find Box close button
MSG_FBFIND 91 The Find Box fiNd button
MSG_FBFNDNXT 92 The Find Box fiNd next button
MSG_CBCLOSE 93 The Change Box close button
MSG_CBFIND 94 The Change Box fiNd button
MSG_CBFNDNXT 95 The Change Box fiNd next button
MSG_CBCHANGE 96 The Change Box chanGe button
MSG_CBCHGFND 97 The Change Box changE+find button
MSG_CBCHGALL 98 The Change Box change aLl button

When actions are requested in either the find or change box, the message refers
to the MDI edit window currently being worked on as its source, and not the find
or change box dialog.

Window Menu and State Messages

The second group of messages provides information about menu choices and
changes in the state of windows. Whenever you select a menu item, switch focus
between windows, or change the contents of an edit window, one of these
messages is generated. Similarly, if you click a button or change the selection
in a list box, a message is generated to tell WIN-PROLOG what you have done.
The window state messages are listed in Table 10.2.



WIN-PROLOG 4.2 - Win32 Programming Guide110

Table 10.2 - Messages Generated by Menus and Changes in Window State

Prolog Atom Integer Meaning

MSG_MENU 00 (M) Menu item selected
MSG_SYSMENU 01 (M) System menu item selected
MSG_CLOSE 02 (X) Window has been requested to close
MSG_FOCUS 03 (F) Window has come into focus
MSG_FUZZY 04 (F) Window has gone out of focus
MSG_CHANGE 05 (T) Edit control has been changed
MSG_BUTTON 06 Button has been clicked
MSG_SELECT 07 List or Combo box selection made
MSG_DOUBLE 08 List or Combo box double clicked
MSG_SIZE 09 (L) Window has been sized
MSG_MOVE 10 (L) Window has been moved
MSG_HORZ 11 (S) Horizontal scroll bar been moved
MSG_VERT 12 (S) Vertical scroll bar been moved
MSG_DROP 22 (D) A collection of files have been dropped

When a menu is selected, or a window's state changes, the message refers
directly to the window or control which generated the message. Most of these
messages include additional information in the 32-bit integer: the two menu
messages, marked (M), return the menu item ID of the selected entry; the close
message, marked (X), returns a value if 0 if the window has been requested to
close, and 1 if a request has been made to terminate the current Windows
session altogether; the two focus message, marked (F), return the raw handle of
the window which lost or gained focus; the change message, marked (T), returns
a value of 0, 1 or 2 to indicate a selection change, actual change or failed change
respectively; the two size and move messages, marked (L), return the new
position or size; the two scroll messages, marked (S), return the new scroll
position in the supplementary data argument, and the drop message, marked
(D), returns a drop handle.

Predefined and User Menu Messages

The two menu messages, marked (M) in Table 10.2, are processed differently
for "predefined" and "user" menu messages. The former group comprises those
messages generated by the menus belonging to the menu bar in the WIN-
PROLOG programming environment. These messages are numbered so that
100-199 constitute the "File" messages, 200-299 the "Edit" messages, and
300-399 the "Search" messages, and so on. All values less than 1000 are
reserved for use by the system, and so should be considered "predefined": these
messages are not sent to window handlers (see below). You should use menu
ID codes of between 1000 and 63999 for user menu items, to ensure that your
window handler will receive the messages.

When selections are made from the main window menu bar or system menu,
the message refers to the top MDI window as its source, and not the main



WIN-PROLOG 4.2 - Win32 Programming Guide 111

window itself; when, however, selections are made from a dialog's menu bar or
system menu, the message refers to the dialog window directly.

Graphics Messages

The third group of messages provides information about changes in the
graphics state of windows. Whenever you expose part of a "grafix" control, so
that it needs to be repainted, or move the mouse across such a window,
messages are generated to help graphics programming in WIN-PROLOG. The
window graphics messages are listed in Table 10.3.

Table 10.3 - Messages Generated by Graphics Events

Prolog Atom Integer Meaning

MSG_PAINT 13 (B) Window needs painting
MSG_LEFTDOWN 14 (P) Left mouse button pressed
MSG_LEFTDOUBLE 15 (P) Left mouse button double clicked
MSG_LEFTUP 16 (P) Left mouse button released
MSG_RIGHTDOWN 17 (P) Right mouse button pressed
MSG_RIGHTDOUBLE 18 (P) Right mouse button double clicked
MSG_RIGHTUP 19 (P) Right mouse button released
MSG_MOUSEMOVE 20 (P) Mouse moved to new position
MSG_CHAR 21 (C) Character returned from keyboard

Most of these messages will only occur in graphics windows, although there are
two exceptions. The paint message, marked (B), returns one of three values in
the supplementary integer: "0" indicates that a "grafix" window needs repainting,
while "1" and "2" indicate that the messages originate from a button in its "button
up" or "button down" state respectively. The seven mouse messages, marked
(P), return the mouse position encoded in the 32-bit integer, and only originate
from "grafix" windows. The final message, marked (C), returns the character
code of any keypress made while a "grafix" window is in focus, while in "edit"
windows it returns the character code of any unprocessed control character.

Message Hooks and Subclassing

When a message is received by WIN-PROLOG, it is initially analysed and sorted
into one of several classes of message described above; once its class has been
established, suitable operations are performed in response to the message. For
example, when the "MSG_FBCLOSE" message is received, WIN-PROLOG first
establishes that this is a message from the "find" box dialog, and then closes the
dialog.

Messages from each source are processed by separate "hook" programs, and
each of these hooks can be subclassed, or taken over, by suitably written user
programs. Programs which subclass messages from predefined sources are
called "user hooks", and generally have the form:



WIN-PROLOG 4.2 - Win32 Programming Guide112

'?CLASS?'(Window,Message,Data,Goal) :-
...

where "CLASS" is an uppercase name identifying the message class, "Window"
is a window handle identifying the message source, "Message" is the message
itself, "Data" is the supplementary data item, and "Goal" is the Prolog goal whose
execution was replaced by the message.

For each of the user hooks, there is a corresponding built-in hook function that
performs default processing, and which you can call if you want WIN-PROLOG

to take control back. Each built-in hook is simply a predicate of the form:

class_hook(Window,Message,Data,Goal) :-

where "class" is the lowercase version of the corresponding "CLASS" name. A
user hook definition which performs no special operations at all could be
written:

'?CLASS?'(Window,Message,Data,Goal) :-
class_hook(Window,Message,Data,Goal).

This would simply pass all messages of the given type directly to the built-in
hook. Such a definition is unnecessary, however, since WIN-PROLOG will call
the default hook automatically if a given user hook is not defined.

Message Preprocessing

Most predefined messages (in fact, all those originating from sources other than
the menus) are preprocessed before being handed over to user hooks. The
preprocessing consists of two steps: firstly, the message number is replaced with
a lowercase atom naming the message, and secondly, the supplementary data
parameter is decoded where necessary to make it easier to use. Thus the
message containing the elements:

(foo,1), 16, 8061384, bar

will be translated to:

(foo,1), msg_leftup, (456,123), bar

In all hook programs (except '?MESSAGE?'/4, see below), you should use the
symbolic names of predefined messages. The data for messages marked (F) in
Tables 10.2 and 10.3 return a window handle; those marked (T) return a value
of "0" if the only operation was a change of selection, "1" if an actual change
has been successful, or "2" if the attempted change resulted in truncation, and
the data parameter of messages marked (S) simply returns the integer scroll
position, and those marked (L) return a pair of integers. These messages, as well
as those which are unmarked, do not perform any translation of the data item.



WIN-PROLOG 4.2 - Win32 Programming Guide 113

The remaining marked messages do perform various transformations, as
outlined below.

The data for messages marked (B) are translated from the integers "0", "1" and
"2" to the atoms "grafix", "button_up" and "button_down" respectively. Similarly,
the data for messages marked "C" return either the character code of a printable
character, or one of the following names for assorted cursor and edit keys:
"prior", "next", "end", "home", "left", "up", "right", "down", "select", "print",
"execute", "snapshot", "insert" and "delete".

Window Handlers

As well as being able to define hooks for predefined messages, you can define
handlers for messages generated from your own dialogs and menus. Like the
predefined message hooks, there is a default handler which processes any
messages that your application does not wish to handle. Window handlers have
exactly the same status with respect to your dialogs and menus as the built-in
hooks have for the predefined dialogs and menus.

After, or even before you create a window or a dialog, you can specify the name
of the handler program for messages to that window or dialog. Each window
or dialog may have its own handler, or you can share a given handler between
several windows and dialog: the choice is yours. You define the relationship
between a window and its handler with the window_handler/2 predicate. For
example, the call:

?- window_handler(foo,bar). <enter>

would register your predicate, bar/4, as the handler for the window or dialog
called "foo". If you create a window or dialog without specifying a handler, then
the built-in handler, window_handler/4, is used automatically.

'?FIND?'/3: The Find Box Hook

Whenever the "Find" box dialog is displayed, either as a result of selecting the
"Search/Find" option from the main window menu bar, or by calling the fndbox/
2 predicate, messages are generated when the user clicks its main button or
requests the box to go away. If you write a definition for '?FIND?'/3, you can pick
up and interpret find box messages; if you want the system to process any
particular message, you should return it to WIN-PROLOG via the find_hook/3
predicate. For example, if you wanted to ignore "MSG_FBFNDNXT" messages,
you could write the following program:

'?FIND?'(Window,msg_fbfndnxt,Goal) :-
!,
fndbox(``,1),
flag(1),

     Goal.



WIN-PROLOG 4.2 - Win32 Programming Guide114

'?FIND?'(Window,Message,Goal) :-
find_hook(Window,Message,Goal).

The first clause matches with the "MSG_FBFNDNXT" message, and simply
reenables the find box; the second clause returns other messages to WIN-
PROLOG for further processing. The "Window" parameter returns the handle
of the edit control that was last in focus before the find box. The find box hook
does not include a data parameter, because this would always be set to zero.

Note that it is your responsibility to reenable messages at the end of a hook by
calling the flag/1 predicate, and then to call the goal that was passed in. If you
fail to do the former, you will prevent further messages being processed; if you
omit to call the goal, you will effectively cause it to succeed without binding any
of its variables, which could cause obvious problems. Similarly, if your hook fails,
it will be as if the goal failed, and whatever query was running will be forced to
backtrack. Note also that because the find box is automatically disabled
whenever its button is clicked, it is necessary to reenable it with a call to fndbox/
2 whenever you want to be able to process further messages.

'?CHANGE?'/3: The Change Box Hook

Whenever the "Change" box dialog is displayed, either as a result of selecting
the "Search/Change" option from the main window menu bar, or by calling the
chgbox/3 predicate, messages are generated when the user clicks its main
button or requests the box to go away. If you write a definition for '?CHANGE?'/
3, you can pick up and interpret change box messages; if you want the system
to process any particular message, you should return it to WIN-PROLOG via the
change_hook/3 predicate. For example, if you wanted to display a message box
in response to the "MSG_CBCLOSE" message, you could write the following
program:

'?CHANGE?'(Window,msg_cbclose,Goal) :-
!,
msgbox('WIN-PROLOG','Closing Change Box',0,_),
chgbox(``,-1),
flag(1),
Goal.

'?CHANGE?'(Window,Message,Goal) :-
change_hook(Window,Message,Goal).

The first clause matches on the "MSG_CBCLOSE" message, and displays a
message box before closing the change box; the second clause simply returns
other messages to WIN-PROLOG for further processing. The "Window"
parameter returns the handle of the edit control that was last in focus before the
change box. The change box hook does not include a data parameter, because
this would always be set to zero.



WIN-PROLOG 4.2 - Win32 Programming Guide 115

Again, note that you are responsible for reenabling the message stream and
calling the interrupted "Goal" if you wish Prolog to proceed unhindered. Note
also that because the change box is automatically disabled whenever its button
is clicked, it is necessary to reenable it with a call to chgbox/3 whenever you want
to be able to process further messages.

Modal Dialog Message Handlers

Before you call a modal dialog using the call_dialog/2 predicate, you should
specify the name of a program that will handle the messages for that dialog by
calling window_handler/2. The name must refer to a predicate with an arity of
4, the arguments of which are the window name, message number, supplementary
data item and original input variable. For example, if you have defined a dialog
called "fred", you could call it modally with the command:

?- window_handler(fred,foo), call_dialog(fred,X). <enter>

This would display the dialog "fred", and direct all messages from its controls to
a program called foo/4, suspending all other program execution until the named
handler returns a binding to the variable "X".

Suppose "fred" contained just two controls, a button of ID "1" labelled "Display",
and a button of ID "2" labelled "Close": you could have written such a program
as follows:

foo((fred,1),msg_button,_,_) :-
!,
write('display button clicked'),
nl.

foo((fred,1),msg_double,_,_) :-
!,
write('display button double clicked'),
nl.

foo((fred,2),msg_button,_,done).

The first two clauses would display suitable messages whenever the "Display"
button ("(fred,1)") was clicked or double clicked, while the third would terminate
the dialog when the "Close" button ("(fred,2)") was clicked. Modal dialogs are
closed by binding the fourth argument to a non-variable value, such as the atom
"done" in this case. This binding will be returned as the binding to "X" in the call
to call_dialog/2 above.

Note that unlike hooks, user handlers do not pass in an interrupted goal, so you
do not have to make any special provisions to ensure that WIN-PROLOG can
continue executing.



WIN-PROLOG 4.2 - Win32 Programming Guide116

Modeless Dialog Message Handlers

As with modal dialogs (see above), before you call a modeless dialog with the
show_dialog/1 predicate, you should specify a message handler for that dialog
by calling window_handler/2. Once again, the name must refer to a predicate
with an arity of 4, the arguments of which are the window name, message
number, supplementary data item, and binding. For example, if you have
defined a dialog called "fred", you could call it modelessly with the command:

?- window_handler(fred,foo), show_dialog(fred). <enter>

This would display the dialog "fred", and direct all messages from its controls to
a program called foo/4, but would immediately return control to WIN-PROLOG.

There is no fundamental difference between modal and modeless dialog
handlers, and modeless dialogs are also closed by binding the fourth argument
to a non-variable value; however, only modal dialogs can return this value to the
calling program. The definition for foo/4 above will handle modeless as well as
modal dialogs.

Generic Window Handlers

All top-level windows, not just modal and modeless dialogs, can be assigned a
handler, and all handlers take the same form. As we saw above, there need not
be any differences between modal and modeless dialog handlers, and the same
is true between window handlers and dialog handlers. In fact, dialogs are simply
special types of window which process certain keystrokes (like <tab> and
<enter>) specially.

You can, if you want, create windows, modal and modeless dialogs without
specifying a handler: there is a built-in generic window handler, called
window_handler/4 which processes important messages itself. In particular,
whenever a button is clicked, it binds its fourth argument to an atom containing
the normalised (lower case, with any hotkey "&" character removed) name of
the button. This is sufficient to close (or rather, hide) whichever top level window
or dialog contained the button. If all you want from a dialog is the name of the
button pressed, with the option of subsequently reading some of the other fields,
you do not need to define a handler for the dialog.

'?MESSAGE?'/4: The Message Hook

We have just looked at a number of different hooks and handlers, each of which
deals with a particular class of messages. While simple to program and use, these
hooks and handlers preclude certain operations: for example, you could not
intercept messages from the predefined environment menus, or write a
program which simply logged all messages of all types.



WIN-PROLOG 4.2 - Win32 Programming Guide 117

Normally, all messages are initially handled internally by WIN-PROLOG, which
sorts them into appropriate categories before translating the message numbers
into symbolic names, preprocessing the data items, and passing the results to
one of the various hooks and handlers described in the previous sections. If,
however, you want to process messages yourself before WIN-PROLOG has had
a chance to see them, you can do so by writing a definition of the "hook"
predicate, '?MESSAGE?'/4. The arguments to this predicate consist of the
window handle, message number, raw data item and interrupted goal respectively.

Any messages that you do not wish to handle should be passed on to the
message_hook/4 predicate for handling by WIN-PROLOG; if you do decide to
handle the message, it is up to you to reenable the message handler and process
the goal. The following example shows a definition of the message hook which
prevents the "File/eXit" mechanism menu item from terminating a WIN-
PROLOG session:

'?MESSAGE?'(_,131,_,Goal) :-
!,
msgbox('Whoops!', 'Sorry, you cannot exit!', 48, _),
flag(1),
Goal.

'?MESSAGE?'(Window,Message,Data,Goal) :-
message_hook(Window,Message,Data,Goal).

Whenever the "File/eXit" message (131) is received, a message box is displayed
on the screen saying that the system does not want you to leave, as shown in
Fig 10.1. Your only way round this is either to delete the definition of
'?MESSAGE?'/4, or to exit via the halt/0 or halt/1 predicates.

Fig 10.1 - A message box displayed by the message hook



WIN-PROLOG 4.2 - Win32 Programming Guide118

Any messages can be intercepted in this way, except those used internally by
the "Edit" and "Window" menus. If you do not pass the message to message_hook/
4, then WIN-PROLOG will not react to the message. You can, of course, pass
the message on after you have performed some preliminary operations: for
example, you might want to ensure that all windows were recompiled before
allowing "Run/Query" to begin a new query.

Note that all messages and supplementary data items are given as integers: the
message hook is called directly a message is received, and before any processing
has been done on the message. The assignment of names to messages and
translation of data items for some of the other hooks and handlers is performed
by message_hook/4.



WIN-PROLOG 4.2 - Win32 Programming Guide 119

Chapter 11 - Creating and Using Dialogs

This chapter describes the creation and use of modal and modeless dialogs by
WIN-PROLOG, bringing together an assortment of topics seen in earlier
chapters, and covering some new aspects of Windows programming.

Dialog and Control Windows

In Chapter 5, we looked at how to create "dialog" windows, in Chapter 6 we
saw how to create "control" windows, and in Chapter 10 we examined
messages, hooks and handlers. A dialog consists minimally of a dialog window
containing a single control window, plus some code to handle the messages
generated by that control: the three chapters just mentioned provide all the
necessary building blocks; in this chapter, we will apply these concepts to
produce some simple example dialogs.

Building a Dialog

For now, we will ignore the subtleties of modal and modeless dialog design, and
build a generic dialog which can be used both in a modal and modeless fashion.
The first step is to define the dialog window. If you are already in WIN-PROLOG,
exit back to Windows by selecting the "eXit" option from the "Files" menu, or
by typing the "halt." command. Next, start WIN-PROLOG up, and type the
following command:

?- wcreate(fred,dialog,`Freddie`,200,250,400,225,16'80c80000).
<enter>

In this, and all other examples, only type the characters in bold letters, and press
the named key for anything bracketed in <italics>. This will create an invisible
dialog window (the first "8" in the style parameter does not include the visibility
bit): normally, dialogs are created and their controls added while invisible, just
as here. Now add some buttons to the dialog by typing (bold letters only):

?- wcreate((fred,1),button,`&OK`,10,150,80,32,16'50010000).
<enter>

?- wcreate((fred,2),button,`&Cancel`,100,150,80,32,16'50010000).
<enter>

?- wcreate((fred,100),edit,``,10,10,380,130,16'50b100c4).
<enter>

These commands will create a pair of buttons labelled "OK" and "Cancel", with
IDs of "1" and "2" respectively, and a multi-line "edit" control with scroll bars,
a border, automatic scrolling, and an ID of "100" (see Appendix D for a full



WIN-PROLOG 4.2 - Win32 Programming Guide120

explanation of window styles). Although the controls have been created "visible"
(the "5" digit in the style), you will still not see anything, since the dialog "fred"
is itself still invisible.

Writing a Modal Dialog Handler

In order to use your dialog, you must write a handler program to process its
messages. Normally, a modal dialog handler simply terminates the dialog when
one of its buttons is clicked, although, as with any WIN-PROLOG hook or
handler, it can perform literally any operation it likes. Select "File/New" from
the main menu, as shown in Fig 11.1, to create a new program window, and
enter the following program (omitting the comments if you like):

% when the OK button is clicked, return the text in the edit window

fred_handler( (fred,1), msg_button, _, Text ) :-
wtext( (fred,100), Text ).

% when the Cancel button is clicked, return the atom "cancel"

fred_handler( (fred,2), msg_button, _, cancel ).

% when an edit is made, give a short beep for each change

fred_handler( (fred,100), msg_change, _, _) :-
beep( 440, 32 ).

Fig 11.1 - Creating a new program window



WIN-PROLOG 4.2 - Win32 Programming Guide 121

Fig 11.2 - Compiling the modal dialog handler

% when the close icon is double clicked, show a message box

fred_handler( fred, msg_close, _, _ ) :-
msgbox( 'Whoops!', 'Use Fred''s Cancel button to close', 48, _ ).

% ignore all other messages

fred_handler( _, _, _, _ ).

Modal dialog handlers terminate the dialog by binding the input (fourth)
argument, and in this example, both the buttons (but not the close icon) do this:
the first clause matches when you click the "OK" button "(fred,1)", binding the
input argument to the entire text contents of the edit control "(fred,100)", and
the second matches when you click the "Cancel" button "(fred,2)", binding the
input to the atom "cancel".

The remaining clauses do not bind the input argument, and so do not terminate
the dialog: the third clause is just a bit of fun, and beeps briefly for every character
you type into the edit control "(fred,100)", the fourth clause displays a helpful
message box whenever you use the "close" icon, and the fifth simply ignores all
other messages. Choose "Run/Compile" from the main menu to compile your
program, as shown in Fig 11.2, correcting any errors and recompiling as
necessary.

Calling the Modal Dialog

The three components, namely a dialog window, some controls, and handler
code, are all now in place. Before you can use your handler with your dialog,



WIN-PROLOG 4.2 - Win32 Programming Guide122

you must register their association; click back on the console window, and type
the command:

?- window_handler(fred,fred_handler). <enter>

This will store an internal record which says that the program fred_handler/4
will handle messages for the dialog "fred". Note that the arity of your handler is
not given: all window and dialog handlers have an arity of four.  Now type the
command:

?- call_dialog(fred,X). <enter>

The two arguments include the name of the dialog to be called ("fred"), and a
variable to return the result. Your dialog will be displayed, as shown in Fig 11.3.

Click on the edit control, and type some input, as shown in Fig 11.4, and notice
how each character you type is accompanied by a short, medium-pitched beep:
this shows you that your handler is being called for every event that takes place
in the dialog.

Now try closing "fred" by double-clicking the "close" icon at the top left corner
of the dialog, and see how this simply displays a message box, as shown in Fig
11.5. Click on "OK" to close the message box, and then on "OK" within your
dialog. The dialog will now vanish, and the contents of the edit control will be
returned bound to the variable "X", as shown in Fig 11.6.

Note that your dialog is still present: call_dialog/2 simply shows a predefined
dialog when you first call it, and hides it again on completion. This means that
you only ever need to define a dialog once per session, but can call it as often
as you like. To see this, once again type the command:

Fig 11.3 - Calling a modal dialog with call_dialog/2



WIN-PROLOG 4.2 - Win32 Programming Guide 123

?- call_dialog(fred,X). <enter>

The dialog will reappear, complete with the text you typed on the previous call,
as shown in Fig 11.7. Now click the "Cancel" button, and it will once again
vanish, this time returning the variable "X" bound to the atom "cancel", as shown
in Fig 11.8.

Fig 11.4 - Typing text into the modal dialog edit control

Fig 11.5 - The result of double-clicking the "close" icon



WIN-PROLOG 4.2 - Win32 Programming Guide124

Writing a Modeless Dialog Handler

Modeless dialogs differ from modal ones only in that they do not return values:
indeed, when they are called, they return control to the calling program
immediately. Normally, a modeless dialog handler reacts to button clicks by
performing specific actions, and as with any WIN-PROLOG hook or handler, it
can perform literally any operation it likes. Click back on the "Untitled" program
window, and edit the first clause of the fred_handler/4 program (omitting the
comment if you like):

Fig 11.6 - Getting the edit box text by clicking "OK"

Fig 11.7 - Reusing the modal dialog with call_dialog/2



WIN-PROLOG 4.2 - Win32 Programming Guide 125

% when the OK button is clicked, write out the text in the edit window

fred_handler( (fred,1), msg_button, _, _ ) :-
wtext( (fred,100), Text ),
writeq( Text ),
nl,
ttyflush.

Modeless dialog handlers cannot return values through their fourth argument,
because the program which invoked them will already have carried on executing
other code; however, binding the fourth argument still has the effect of
terminating the dialog: in this example, only the "Cancel" button does this.

The new first clause matches when you click the "OK" button "(fred,1)", writing
out the entire text contents of the edit control "(fred,100)", but does not
terminate the dialog, the remaining clauses behave just as in the modal dialog
example. Once again choose "Run/Compile" from the main menu to compile
your program, as shown in Fig 11.9, correcting any errors and recompiling as
necessary.

Calling the Modeless Dialog

We will use the existing dialog "fred", completely unchanged, to illustrate a
modeless dialog: click back on the console window, and type the command:

?- show_dialog(fred). <enter>

The single argument consists of the name of the dialog to be displayed ("fred").
Note that it is not necessary to call window_handler/2 again, since the dialog/

Fig 11.8 - The result of clicking the "Cancel" button



WIN-PROLOG 4.2 - Win32 Programming Guide126

handler registration we performed earlier is persistent, and needs to be done
only once per WIN-PROLOG session.

Your dialog will be displayed, again with the input you typed previously. Notice
that this time, control returns immediately to WIN-PROLOG, which displays the
"?-" prompt, as shown in Fig 11.10.

Click on the edit control, and type some more input, as shown in Fig 11.11, and
then click on "OK": see how the contents of the edit control are displayed on
the console, as shown in Fig 11.12. You can type more input, and press "OK",
as often as you like, because the modeless dialog is not terminated by the "OK
button. To make the dialog disappear, click the "Cancel" button, and it will
vanish, as shown in Fig 11.13. Once again, the dialog has not been destroyed,
but merely hidden.

To show that the dialog is truly modeless, call it up again with the command:

?- show_dialog(fred). <enter>

The dialog will be displayed, including the input you typed in the previous
example. Now click back on the console window, and type the command:

?- wshow(fred,0). <enter>

This will cause the dialog to disappear, just as if you had clicked the "Cancel"
button, as shown in Fig 11.14. Unlike modal dialogs, where you are forced to
respond to them before performing any other actions, modeless ones merely
coexist with the other WIN-PROLOG windows, allowing you to initiate actions
(such as the copying and writing of the text of the edit control) whenever you

Fig 11.9 - Compiling the modeless dialog handler



WIN-PROLOG 4.2 - Win32 Programming Guide 127

want to; this is examined a little further in the next section.

Responses and Actions

Modal dialogs can be thought of as requests for input: the system might be
saying, "give me a file name", or perhaps, "decide which font you want to use";
when presented with a modal dialog, you are forced to respond, usually
indicating acceptance by clicking an "OK" button, or rejection by clicking
"Cancel". Modeless dialogs, on the other hand, do not request information; they
are simply tools which you can select to initiate actions when you want, such as

Fig 11.10 - Calling a modeless dialog with show_dialog/1

Fig 11.11 - Adding further text to the modeless dialog



WIN-PROLOG 4.2 - Win32 Programming Guide128

a text search or replace function during editing: in this respect, modeless dialogs
behave less like modal dialogs, and more like menus.

 When designing dialogs, the desired modality should be borne in mind. A modal
"message" box, for example, will include buttons with labels like "OK", "Cancel",
"Yes", "No", and so forth, simply allowing the user to indicate a response. A
modeless "change" box for an edit will have buttons with names such as "Find",
"Change", and so forth: these are the names of specific actions. To put an "OK"
button into a modeless dialog (as we did in the example above) is usually a poor

Fig 11.12 - Text written to the console by clicking "OK"

Fig 11.13 - The result of clicking the "Cancel" button



WIN-PROLOG 4.2 - Win32 Programming Guide 129

piece of design. The word "OK" is used to respond to a question, but modeless
dialogs do not ask questions!

When used modally, our "fred" dialog is effectively saying "enter some text, and
press OK when done"; the call to call_dialog/2 actually waits until the second
argument is bound to that text, or some other value. When used modelessly,
"fred" is really waiting for you to initiate write commands, or to close it. The "OK"
and "Cancel" buttons should really be renamed "Print" and "Close". Apart from
recreating "fred" from scratch, the obvious way to rename the buttons is to use
the wtext/2 predicate. Type the following two commands:

?- wtext((fred,1),`&Print`). <enter>

?- wtext((fred,2),`&Close`). <enter>

Now call the dialog modelessly for one last time, by typing the call:

?- show_dialog(fred). <enter>

The dialog "fred" will appear once again, but this time with its buttons relabelled,
as shown in Fig 11.15. Click on the "Print" button, and the contents of the edit
window will still be written to the console, as shown in Fig 11.16: because dialog
handlers use the window handle ("(name,ID)"), and not the text labels, to identify
the source of messages, your existing handler will work unchanged. Click on the
"Close" button to make your dialog go away.

Fig 11.14 - Hiding a modeless dialog with wshow/2



WIN-PROLOG 4.2 - Win32 Programming Guide130

Freeing Memory Resources

As you have seen, dialogs are not destroyed after calls to call_dialog/2 or
show_dialog/1, but are merely hidden, so that they can be reused. In some
applications, however, keeping copies of all dialogs between calls would be
wasteful of memory, and so it would be desirable to free their resources. To do
this, all you need to do is close the dialog window with the wclose/1 predicate.
Type the command:

Fig 11.15 - The dialog displayed with relabelled buttons

Fig 11.16 - The result of clicking the relabelled "Print"



WIN-PROLOG 4.2 - Win32 Programming Guide 131

?- wclose(fred). <enter>

This will close the dialog "fred", and its three controls, returning their resources
to Windows. Note that you should not close a dialog which is currently being
displayed by call_dialog/2, but should terminate the dialog through the handler
first. This is because your program is waiting for a response from the dialog, and
if you close the dialog without giving that response, your program will be waiting
forever! Note also that you do not need to close controls individually: because
they are children of the dialog window, they will be destroyed automatically by
Windows when the dialog itself is closed.



WIN-PROLOG 4.2 - Win32 Programming Guide132

Chapter 12 - Graphics

This chapter describes the Graphics subsystem of WIN-PROLOG, covering
various aspects of their creation, manipulation and low level programming. The
subject of graphics is large and potentially complex, and touches on many of the
topics discussed in earlier chapters.

Fundamental Considerations

Under DOS, graphics programming is very simple. Programs can perform
various types of output (lines, polygons, etc), and can wait for mouse or
keyboard input. Applications tend to be system-driven: for example, a program
to allow the user to define a polygon might contain logic along the following
lines:

get_polygon( Poly ) :-
get_mouse( X, Y, Button ),
process_polygon( Button, X, Y, Poly ).

process_polygon( right, _, _, [] ).

process_polygon( left, X, Y, [X,Y|Poly] ) :-
line_to( X, Y ),
get_mouse( X1, Y1, Button ),
process_polygon( Button, X1, Y1, Poly ).

Any input and output in such a program is basic and immediate: the mouse clicks
are "read", and lines are "written". Graphics I/O is fundamentally identical to text
I/O, using a simple extension of the glass teletype concept.

Under Windows, matters are not so cut and dry. Input is not performed by
writing programs which wait for a mouse click: rather, mouse events, which
include movement, clicking, releasing, double-clicking, etc., are reported to
programs via "events" which interrupt program execution. Output is more
complex, since as well as drawing shapes, programs must be able to redraw
them at Windows' request: for example, if another window is brought on top of
one containing graphics, when the top window is moved or closed, the newly
exposed window will need to refresh its graphics. Under Windows, the structure
of a polygon input program would be something like the following:

get_polygon( Poly ) :-
abolish( poly/1 ),
abolish( points/1 ),
assert( points([]) ),
repeat,



WIN-PROLOG 4.2 - Win32 Programming Guide 133

wait( 0 ),
def( poly, 1, _ ),
poly( Poly ).

poly_handler( right, _, _ ) :-
points( P ),
reverse( P, R ),
assert( poly(R) ).

poly_handler( left, X, Y ) :-
retract( points(P) ),
assert( points( [Y,X|P] ),
lineto( X, Y ).

poly_handler( paint, _, _ ) :-
points( P ),
polyline( P ).

The essential difference between the two versions of get_polygon/1 is that the
DOS version is a conventional procedural program which reads input, performs
output, and recursively builds a data structure containing the required information,
while the Windows version is a collection of handlers for individual events, and
which uses global data structures to maintain information between these events.

Please note that the two "definitions" just presented consist of pseudocode, and
use imaginary predicates, button names and messages: they are for illustrative
purposes only. The remainder of this chapter uses real examples.

Windows and Device Contexts

One major concept needs to be discussed briefly before continuing with the
details of graphics programming. In Windows, graphical operations are not
performed directly to windows, but rather to a logical copy of the window, called
the "device context". There are several types of device context, including those
for windows, printers, bitmaps, metafiles and others. Once a device context has
been obtained, it can be used together with generic, device-independent
graphics code, effectively hiding the main differences between different types
of physical device.

In WIN-PROLOG, device contexts are managed by three predicates, gfx_begin/
1, gfx_paint/1 and gfx_end/1. The differences between the first two of these
will be explained below, but it is important to note that device contexts are
potentially scarce resources, and are "borrowed" from the operating system,
and so should always be "returned" upon completion of a graphics sequence. In
practice, this simply means ensuring that each call to gfx_begin/1 or gfx_paint/
1 is matched by an equivalent call to gfx_end/1.



WIN-PROLOG 4.2 - Win32 Programming Guide134

Repainting Graphics

Probably the most onerous task of any Windows graphics application is the need
to maintain a logical representation of the image in any window, so that it can
be repainted when necessary. Simple operations such as the moving, scrolling
and resizing of windows can cause portions of graphics regions to be uncovered.
Windows does not maintain the contents of its windows, and so it is up to the
application to redraw the newly exposed areas. In practice, this requires that the
application store a copy of every "on-the-fly" graphics operation so that it can
be repeated on demand. A simple Prolog program to draw a line in a window,
and refresh it when needed, could be written as follows:

line( Window, X0, Y0, X1, Y1 ) :-
gfx_begin( Window ),
gfx( polyline(X0,Y0,X1,Y1) ),
gfx_end( Window ),
assert( grafix(polyline(X0,Y0,X1,Y1)) ).

grafix_handler( Window, msg_paint, _, _ ) :-
gfx_begin( Window ),
forall( grafix( Grafix ),

 gfx( Grafix )
),

gfx_end( Window ).

The output program, line/5, obtains a device context for the window, performs
the graphics, then returns the device context before storing a copy of its
operation in the dynamic relation grafix/1. A window handler, grafix_handler/
4, reacts to "MSG_PAINT" messages by repeating all such stored commands.

The only problem with this program is that each time any one part of the "Grafix"
window needs to be refreshed, the entire window is redrawn. WIN-PROLOG

maintains information about which part of a "Grafix" window needs to be
redrawn, and this is represented by a "region" which is comprised of the
accumulated "dirty" areas of a window. A refinement of the dialog handler just
shown would be as follows:

grafix_handler( Window, msg_paint, _, _ ) :-
gfx_paint( Window ),
forall( grafix( Grafix ),

 gfx( Grafix )
),

gfx_end( Window ).

The predicate gfx_paint/1 obtains a device context clipped to include only those
portions of the window which have been invalidated, so that only those parts
of a graphics window which need refreshing are redrawn.



WIN-PROLOG 4.2 - Win32 Programming Guide 135

Graphics, "Button" and "Grafix" Windows

The gfx/1 predicates can perform graphics output to any type of device context,
but only two classes of window support for the "MSG_PAINT" messages which
alert Prolog programs when a window needs repainting. One of these classes,
the "Button", sends paint messages when it is clicked on or released, as well as
when it is uncovered by another window, allowing graphics buttons to be
created. Create a new untitled file by choosing the "File/New" menu option, and
type in the following program as shown in Figure 12.1, and then choose the
"Run/Compile" menu option to compile it, as shown in Figure 12.2.

button_demo :-
wcreate( fred, button, ``, 300, 200, 100, 100, 16'90000000 ),
gfx_brush_create( blue, 0, 0, 255, solid ),
gfx_brush_create( red, 255, 0, 0, solid ),
window_handler( fred, fred_handler ).

fred_handler( fred, msg_paint, button_up, _ ) :-
gfx_paint( fred ),
gfx( (brush = blue -> ellipse( 10, 10, 90, 90 )) ),
gfx_end( fred ).

fred_handler( fred, msg_paint, button_down, _ ) :-
gfx_paint( fred ),
gfx( (brush = red -> ellipse( 10, 10, 90, 90 )) ),
gfx_end( fred ).

Fig 12.1 - A program to display a graphic button



WIN-PROLOG 4.2 - Win32 Programming Guide136

This program creates a "desktop" button in the middle of the screen, as shown
in Fig 12.3, which contains a blue circle whenever it is unpressed and a red one
whenever it is pressed. Note that "Button" windows do not maintain a "dirty"
region, and so are always repainted in their entirety. Because they are small, and
will typically contain simple graphics, this is not generally a problem.

The other class of window which sends "MSG_PAINT" messages, the "Grafix"
window, also provides keyboard, mouse movement and mouse button messages,
to allow virtually any type of input to be processed.

Fig 12.2 - Compiling the graphic button program

Fig 12.3 - A desktop button containing graphics



WIN-PROLOG 4.2 - Win32 Programming Guide 137

Messages and Graphics

A number of messages in WIN-PROLOG relate specifically to graphics operations
(see Chapter 10 for more information about messages). The following sections
describe the graphics messages in greater detail.

MSG_PAINT - Window needs painting

This message is shared by "Button" and "Grafix" windows, and is generated
whenever their contents need repainting. The data parameter contains one of
three values listed in Table 12.1:

Table 12.1 - MSG_PAINT Data Values

Prolog Atom Meaning

grafix Window is a "Grafix" window
button_up Window is an un-pressed "Button" window
button_down Window is a pressed "Button" window

When reacting to "Grafix" windows, it is important to obtain a clipped device
context using gfx_paint/1, and to redraw any graphics before returning the
device context with gfx_end/1; for "Button" windows, these steps are optional,
and are only needed if it is desired to add some graphics to the button.

MSG_LEFTDOWN - Left mouse button pressed

This message is generated by "Grafix" windows only, and indicates that the left
mouse button has been pressed. The data parameter contains the X and Y
coordinates of the cursor position, relative to the window origin, in the form of
a conjunction (X,Y). For any message of this kind, there will always be a
corresponding "MSG_LEFTUP" message.

MSG_LEFTDOUBLE - Left mouse button double clicked

This message is generated by "Grafix" windows only, and indicates that the left
mouse button has been double-clicked. The data parameter contains the X and
Y coordinates of the cursor position, relative to the window origin, in the form
of a conjunction (X,Y). For any message of this kind, there will always be a
preceding "MSG_LEFTDOWN", and corresponding "MSG_LEFTUP" message.

MSG_LEFTUP - Left mouse button released

This message is generated by "Grafix" windows only, and indicates that the left
mouse button has been released. The data parameter contains the X and Y
coordinates of the cursor position, relative to the window origin, in the form of
a conjunction (X,Y). This message will only be generated if there has been a
corresponding "MSG_LEFTDOWN" or "MSG_LEFTDOUBLE" message.



WIN-PROLOG 4.2 - Win32 Programming Guide138

MSG_RIGHTDOWN - Right mouse button pressed

This message is generated by "Grafix" windows only, and indicates that the right
mouse button has been pressed. The data parameter contains the X and Y
coordinates of the cursor position, relative to the window origin, in the form of
a conjunction (X,Y). For any message of this kind, there will always be a
corresponding "MSG_RIGHTUP" message.

MSG_RIGHTDOUBLE - Right mouse button double clicked

This message is generated by "Grafix" windows only, and indicates that the right
mouse button has been double-clicked. The data parameter contains the X and
Y coordinates of the cursor position, relative to the window origin, in the form
of a conjunction (X,Y). For any message of this kind, there will always be a
preceding "MSG_RIGHTDOWN", and a corresponding "MSG_RIGHTUP"
message.

MSG_RIGHTUP - Right mouse button released

This message is generated by "Grafix" windows only, and indicates that the right
mouse button has released. The data parameter contains the X and Y
coordinates of the cursor position, relative to the window origin, in the form of
a conjunction (X,Y). This message will only be generated if there has been a
corresponding "MSG_RIGHTDOWN" or "MSG_RIGHTDOUBLE" message.

MSG_MOUSEMOVE - Mouse moved to new position

This message is generated by "Grafix" windows only, and indicates that the
cursor has moved to a new position over the window. It is also generated for any
cursor movements after "MSG_LEFTDOWN", "MSG_LEFTDOUBLE",
"MSG_RIGHTDOWN" and "MSG_RIGHTDOUBLE", until their corresponding
"MSG_LEFTUP" or "MSG_RIGHTUP" messages, even when the cursor is
moved outside the area of the window. The data parameter contains the X and
Y coordinates of the cursor position, relative to the window origin, in the form
of a conjunction (X,Y).

MSG_CHAR - Character returned from keyboard

This message is generated by "Grafix" windows only, and indicates that a
keystroke has been made while the window was in focus. The data parameter
contains the character code of the key that was typed, or one of the special key
codes listed in Table 12.2:



WIN-PROLOG 4.2 - Win32 Programming Guide 139

Table 12.2 - MSG_CHAR Special Key Codes

Prolog Atom Meaning

prior The "PRIOR" key
next The "NEXT" key
end The "END" key
home The "HOME" key
left The "LEFT" key
up The "UP" key
right The "RIGHT" key
down The "DOWN" key
select The "SELECT" key
print The "PRINT" key
execute The "EXECUTE" key
snapshot The "SNAPSHOT" key
insert The "INSERT" key
delete The "DELETE" key

Graphics Components: Objects and Functions

There are two main components to the graphics subsystem: objects and
functions. The former family consists of traditional Windows GDI objects such
as brushes, pens, fonts and so forth, as well as some WIN-PROLOG-defined ones
such as foregrounds and backgrounds. Graphics functions are simply the
primitives which actually perform drawing operations.

Graphics objects are applied to graphics functions in order to govern their
appearance, using a syntax rather like the Prolog "if-then" construct. We have
already seen an example of this with the button_demo/0 program above, and
here is another example of a graphics call:

gfx( ( pen = red,
brush = blue

  -> rectangle( 100, 100, 200, 200 ),
( brush = green
-> ellipse( 200, 200, 300, 300 )
)

     ) ).

This call selects two objects, a red pen and a blue brush, draws a rectangle with
these attributes, before selecting a green brush (keeping the existing red pen),
and drawing an ellipse. The pen and brushes are assumed to have been defined
previously with calls to gfx_pen_create/5 and gfx_brush_create/5 respectively,
and a device context is assumed to have been obtained by a call to either
gfx_begin/1 or gfx_paint/1.



WIN-PROLOG 4.2 - Win32 Programming Guide140

The nested structure passed into gfx/1 is known as a "GraFiX procedure", and
can be arbitrarily complex. Objects selected in outer nested levels in GraFiX
procedures are inherited by inner levels, but not vice versa; nesting can be
arbitrarily deep, and is limited only by internal Windows stack structures. This
chapter describes GraFiX in general terms: please see the Technical Reference
for specific details about GraFiX procedures, primitives and predicates.

GraFiX Objects: Backgrounds

Backgrounds are WIN-PROLOG objects which consist of a colour, specified as
an "RGB" triplet (three 8-bit integers, one each for red, green and blue) which,
when selected into a device context, define the background colour for text and
the "gaps" in hatched brushes and dotted lines. Several stock backgrounds are
defined, as listed in Table 12.3:

Table 12.3 - Stock Backgrounds

Object Name Description

white_back white (0% black) background
ltgray_back light grey (25% black) background
gray_back mid grey (50% black) background
dkgray_back dark grey (75% black) background
black_back black (100% black) background
null_back null (transparent) background

Additional backgrounds are created with the gfx_back_create/4 predicate,
which specifies a name and an RGB value for the background. For example, the
call:

?- gfx_back_create( yellow, 255, 255, 0 ).

creates a background called "yellow", assigning it maximum values for red and
green, and minimum for blue. This background could then be selected in a gfx/
1 call showing, for example, some text as follows:

?- gfx( (back = yellow -> text( 100, 100, `Hello World`)) ).

Backgrounds are closed with the gfx_back_close/1 predicate, and a list of
existing backgrounds (excluding the stock backgrounds) can be found with the
gfx_back_dict/1 predicate. A final predicate, gfx_back_handle/2, is used to
convert between a background object and its handle.

GraFiX Objects: Bitmaps

Bitmaps are Windows objects which are used to store raster images. These
images are created by other applications, such as Windows Paint(Brush), Adobe



WIN-PROLOG 4.2 - Win32 Programming Guide 141

PhotoShop, or by the device drivers for hardware such as scanners and fax
modems. They do not affect the drawing of other objects, but are displayed
directly in calls to gfx/1. There are no stock bitmaps.

Bitmaps are loaded from ".BMP" files using the gfx_bitmap_load/2 predicate,
and are closed with gfx_bitmap_close/1; they can be listed by gfx_bitmap_dict/
1 and their object descriptors and handles converted between one another with
gfx_bitmap_handle/2.

GraFiX Objects: Brushes

Brushes are Windows objects which combine a colour, specified as an "RGB"
triplet (three 8-bit integers, one each for red, green and blue) with a style, which
may be solid or one of several hatched patterns. When selected into a device
context, the brush defines the fill colour and pattern for solid objects apart from
text. Several stock brushes are defined, as listed in Table 12.4:

Table 12.4 - Stock Brushes

Object Name Description

white_brush white (0% black) brush
ltgray_brush light grey (25% black) brush
gray_brush mid grey (50% black) brush
dkgray_brush dark grey (75% black) brush
black_brush black (100% black) brush
null_brush null (transparent) brush

Additional brushes are created with the gfx_brush_create/5 predicate, which
specifies a name and an RGB value for the brush, and one of the styles listed
in Table 12.5:

Table 12.5 - Brush Styles

Style Name Description

solid solid brush (     )
horizontal horizontal hatch (-----)
vertical vertical hatch (|||||)
fdiagonal forwards diagonal hatch (\\\\\)
bdiagonal backwards diagonal hatch (/////)
cross cross hatch (+++++)
diagcross diagonal cross hatch (XXXXX)

For example, the call:

?- gfx_brush_create( blue_stripes, 0, 0, 255, vertical ).



WIN-PROLOG 4.2 - Win32 Programming Guide142

creates a brush called "blue_stripes", with its colour set to maximum intensity
blue, and the vertical stripe style. This brush could then be selected in a gfx/1
call showing, for example, a filled circle as follows:

?- gfx( (brush = blue_stripes -> ellipse( 100, 100, 100, 100 )) ).

Brushes are closed with the gfx_brush_close/1 predicate, and can be listed with
gfx_brush_dict/1; finally, gfx_brush_handle/2 is used to convert between a
brush object and its handle.

GraFiX Objects: Cursors

Cursors are Windows objects which are used to track the cursor position. No
support is provided in WIN-PROLOG for creating, loading or closing cursors, but
a number of stock cursors are supplied, as listed in Table 12.6:

Table 12.6 - Stock Cursors

Object Name Description

arrow_cursor slanted arrow cursor
ibeam_cursor i-beam text cursor
wait_cursor hourglass cursor
cross_cursor small cross cursor
uparrow_cursor upward arrow cursor
size_cursor four-headed arrow cursor
icon_cursor small square cursor
sizenwse_cursor nw/se two-headed arrow cursor
sizenesw_cursor ne/sw two-headed arrow cursor
sizewe_cursor w/e two-headed arrow cursor
sizens_cursor n/s two-headed arrow cursor
sizeall_cursor win32 size all cursor
no_cursor win32 no cursor
appstarting_cursor win32 application stating cursor

Cursors are not strictly graphics objects, but their handling is related to that of
the other objects. The only cursor object predicate is gfx_cursor_handle/2,
which is used to convert between a cursor object and its handle. Each "Grafix"
window can be assigned its own cursor, using the gfx_window_cursor/2
predicate; for example:

?- gfx_window_cursor( (fred,1), stock(wait_cursor) ).

causes the "wait" cursor to be displayed automatically whenever the cursor is
directly over the "Grafix" window "(fred,1)".



WIN-PROLOG 4.2 - Win32 Programming Guide 143

GraFiX Objects: Fonts

Fonts are Windows objects which, when selected into a device context, define
the outline shapes used to display text Several stock fonts are defined, as listed
in Table 12.7:

Table 12.7 - Stock Fonts

Object Name Description

oem_fixed_font OEM fixed font (IBM PC char set)
ansi_fixed_font ANSI fixed font (Windows char set)
ansi_var_font ANSI var font (Windows char set)
system_font system var font (Windows char set)
device_default_font default fixed font (Windows char set)
system_fixed_font system fixed font (Windows char set)

Additional fonts are created with the gfx_font_create/4 predicate, which
specifies a name, a typeface, a point size and one of the styles listed in Table
12.8:

Table 12.8 - Font Styles

Style Name Description

normal normal roman font
italic normal italic font
bold bold roman font
bolditalic bold italic font

For example, the call:

?- gfx_font_create( big, 'courier new', 48, bold ).

creates a font called "big" from the "Courier New" typeface, in 48 point bold.
This font could then be selected in a gfx/1 call showing, for example, some text
as follows:

?- gfx( (font = big -> text( 100, 100, `BOO!` )) ).

Fonts are closed with the gfx_font_close/1 predicate, listed with gfx_font_dict/
1 and their object descriptions and handles are converted by gfx_font_handle/
2. Note that the gfx_font*/n predicates overlap in functionality with the wf*/n
family (wfcreate/4, wfclose/1, etc), and that fonts created with either set of
predicates can be used by the other. In due course, the older wf*/n family will
probably be dropped from the system, and the gfx_font*/n family extended to
encompass additional functionality.



WIN-PROLOG 4.2 - Win32 Programming Guide144

GraFiX Objects: Foregrounds

Foregrounds are WIN-PROLOG objects which consist of a colour, specified as
an "RGB" triplet (three 8-bit integers, one each for red, green and blue) which,
when selected into a device context, define the foreground colour for text.
Several stock foregrounds are defined, as listed in Table 12.9:

Table 12.9 - Stock Foregrounds

Object Name Description

white_fore white (0% black) foreground
ltgray_fore light grey (25% black) foreground
gray_fore mid grey (50% black) foreground
dkgray_fore dark grey (75% black) foreground
black_fore black (100% black) foreground

Additional foregrounds are created with the gfx_fore_create/4 predicate, which
specifies a name and an RGB value for the foreground. For example, the call:

?- gfx_fore_create( green, 0, 255, 0 ).

creates a foreground called "green", assigning it maximum intensity for green,
and minimum for red and blue. This foreground could then be selected in a gfx/
1 call showing, for example, some text as follows:

?- gfx( (fore = green -> text( 100, 100, `Ecology`)) ).

Foregrounds are closed with the gfx_fore_close/1 predicate, and a list of
existing foregrounds (excluding the stock foregrounds) can be found with the
gfx_fore_dict/1 predicate. A final predicate, gfx_fore_handle/2, is used to
convert between a foreground object and its handle.

GraFiX Objects: Icons

Icons are Windows objects which are used to store small raster images to identify
files, programs and windows. These images are created by other applications,
such as ImagEdit. They do not affect the drawing of other objects, but are
displayed directly in calls to gfx/1. There are a number of stock icons, which are
listed in Table 12.10:

Table 12.10 - Stock Icons

Object Name Description

hand_icon stop sign icon
question_icon question mark icon



WIN-PROLOG 4.2 - Win32 Programming Guide 145

exclamation_icon exclamation mark icon
asterisk_icon information icon

Icons are loaded from ".ICO", ".EXE", ".DLL" and other files using the
gfx_icon_load/3 predicate, and are closed with gfx_icon_close/1; they can be
listed by gfx_icon_dict/1 and their object descriptors and handles converted
between one another with gfx_icon_handle/2.

GraFiX Objects: Metafiles

Metafiles are Windows objects which are used to store vector images. These
images are created by other applications, such as CorelDRAW!, or even by WIN-
PROLOG programs. They do not affect the drawing of other objects, but are
displayed directly in calls to gfx/1. There are no stock metafiles.

Metafiles are loaded from ".WMF" files using the gfx_metafile_load/2 predi-
cate, and are closed with gfx_metafile_close/1; they can be listed by
gfx_metafile_dict/1 and their object descriptors and handles converted be-
tween one another with gfx_metafile_handle/2.

GraFiX Objects: Pens

Pens are Windows objects which combine a colour, specified as an "RGB" triplet
(three 8-bit integers, one each for red, green and blue) with a style, which may
be a solid thickness or one of several dotted or dashed patterns. When selected
into a device context, the pen defines the outline colour and pattern for solid
objects apart from text. Several stock pens are defined, as listed in Table 12.11:

Table 12.11 - Stock Pens

Object Name Description

white_pen white (0% black) pen
black_pen black (100% black) pen
null_pen null (transparent) pen

Additional pens are created with the gfx_pen_create/5 predicate, which
specifies a name and an RGB value for the pen, and either an integer thickness
or one of the styles listed in Table 12.12:

Table 12.12 - Pen Styles

Style Name Description

solid solid pen (     )
dash dashed pen (-----)
dot dotted pen (.....)



WIN-PROLOG 4.2 - Win32 Programming Guide146

dashdot dashed/single dotted pen (_._._)
dashdotdot dashed/double dotted pen (_.._.)

For example, the call:

?- gfx_pen_create( black_thick, 0, 0, 0, 5 ).

creates a pen called "black_thick", with its colour set to black, and a solid
thickness of 5 pixels. This pen could then be selected in a gfx/1 call showing,
for example, a thick-framed square as follows:

?- gfx( (pen = back_thick -> rectangle( 100, 100, 100, 100 )) ).

Pens  are closed with the gfx_pen_close/1 predicate, and can be listed with
gfx_pen_dict/1; finally, gfx_pen_handle/2 is used convert between a pen
object and its handle.

GraFiX Objects: Raster Operations

Raster operations, or "rops" are WIN-PROLOG objects which, when selected
into a device context, defines the way in which a graphics primitive combines
its output with data already drawn on the device context. No support is provided
in WIN-PROLOG for creating, loading or closing rops, because all possible cases
are supplied as stock rops, as listed in Table 12.13:

Table 12.13 - Stock Rops

Object Name Description

black_rop black raster operation mode
notmergepen_rop not merge pen raster operation mode
masknotpen_rop mask not pen raster operation mode
notcopypen_rop not copy pen raster operation mode
maskpennot_rop mask pen not raster operation mode
not_rop not raster operation mode
xorpen_rop xor pen raster operation mode
notmaskpen_rop not mask pen raster operation mode
maskpen_rop mask pen raster operation mode
notxorpen_rop not xor pen raster operation mode
nop_rop nop raster operation mode
mergenotpen_rop merge not pen raster operation mode
copypen_rop copy pen raster operation mode
mergepennot_rop merge pen not raster operation mode
mergepen_rop merge pen raster operation mode
white_rop white raster operation mode



WIN-PROLOG 4.2 - Win32 Programming Guide 147

For example, the call:

?- gfx( (rop = stock(xorpen_rop) -> polyline( 10, 10, 100, 100 )) ).

draws a diagonal polyline segment in "xor" mode. The only rop object predicate
is gfx_rop_handle/2, which is used to convert between a rop object and its
handle.

GraFiX: Setting the Device Context

All GraFiX operations are performed within a logical "device context", which
allows the same piece of GraFiX code to be used in a window on the screen, on
the printer, for hit testing, or other features not yet implemented (such as bitmap
and metafile creation). Before any calls can be made to gfx/1, a device context
must be set up, usually by a call to gfx_begin/1. This takes the name of a window,
and stores its device context on an internal stack. One or more calls is then made
to gfx/1 to perform graphics operations, at the end of which the device context
should be unstacked and returned with a call to gfx_end/1. For example, a
simple program to draw a circle in a "Grafix" window called "(fred,1)" might be
written as follows:

fred :-
gfx_begin( (fred,1) ),
gfx( ellipse( 100, 100, 200, 200 ) ),
gfx_end( (fred,1) ).

Normally, the setting up and handling of the device context should be kept
separate from the code which actually performs output, to facilitate the porting
of code between devices. The above program could be rewritten:

fred :-
gfx_begin( (fred,1 ),
circle,
gfx_end( (fred,1 ).

circle :-
gfx( ellipse( 100, 100, 200, 200 ) ).

The benefit of this approach will become apparent below, but is mainly due to
the device-independent nature of GraFiX calls, which would enable "circle/0"
to be called for painting, printing, and hit testing as well as in the initial drawing
of a graphic.

When a "Grafix" or "button" window needs repainting, a "MSG_PAINT"
message is sent by WIN-PROLOG to its window handler. The correct response
to this is to call gfx_paint/1 to obtain a clipped device context, and then to
redraw any graphics.  For example, to refresh the circle above, the window
handler for dialog "fred" should include the clause:



WIN-PROLOG 4.2 - Win32 Programming Guide148

fred_handler( (fred,1), msg_paint, _, _ ) :-
gfx_paint( (fred,1) ),
circle,
gfx_end( (fred,1) ).

Because we separated explicit device context setup routines (level 2) from actual
GraFiX calls (level 3), we could use the "circle/0" program to perform actual
graphics output in both the "fred/0" and "fred_handler/4" programs.

GraFiX: Changing Device Context Object Selections

Each time gfx_begin/1 or gfx_paint/1 is called to obtain a device context, any
existing device context for the window concerned is saved on an internal stack,
and all settings such as brush and pen selections, mapping modes, and so forth,
are reset to their initial defaults (see above). As well as choosing selections for
objects and modes within calls to gfx/1, several predicates allow the defaults to
be changed. These changes last until the call to gfx_end/1 which terminates the
graphics sequence, at which points the previously existing device context is
unstacked and all its settings restored.

Objects can be selected into a device context either during a call to gfx/1, using
the "implication" (->) structure, or prior to a such a call by using the gfx_select/
1 predicate. This predicate allows settings to be selected over multiple GraFiX
calls to improve efficiency. Consider a program which makes two calls to gfx/
1 to draw two shapes, both using a brush called "red" and a pen called "blue".
These selections could be in each of the calls:

shapes1 :-
gfx( ( brush = red,

pen = blue
-> ellipse( 100, 100, 200, 200 )

     ) ),
gfx( ( brush = red,

pen = blue
-> rectangle( 200, 200, 300, 300 )

     ) ).

The selections of brush and pen could be made once only by rewriting this
program as follows:

shapes2 :-
gfx_select( ( brush = red,

pen = blue
       ) ),

gfx( ellipse( 100, 100, 200, 200 ) ),



WIN-PROLOG 4.2 - Win32 Programming Guide 149

gfx( rectangle( 200, 200, 300, 300 ) ).

Of course, with this simple example, an even shorter version of the program
could be written:

shapes3 :-
gfx( ( brush = red,

pen = blue
-> ellipse( 100, 100, 200, 200 ),

rectangle( 200, 200, 300, 300 )
     ) ).

but the purpose of "shapes2/0" is to demonstrate that the default selections of
objects can be overwritten by using settings for a series of graphics calls.

Any of the "selectable objects" or "selectable transformations" that can be
selected with a call to gfx/1 can also be selected by gfx_select/1.

GraFiX: Changing Device Context Mapping and Origin

As well as object selections, device contexts have both a "mapping" and an
"origin" which between them define the mathematical relationship between
logical (device) coordinates and physical (viewport) coordinates. The mapping
is set up by the gfx_mapping/4 predicate, which controls magnification and
orientation, while the origin is set by gfx_origin/2. The default mapping is
(0,0,0,0), which effectively means 1:1 magnification, while the default origin is
(0,0),  which means top left. The following program changes the mapping to
give a 2.5:1 horizontal magnification, a 3:1 vertical magnification, with an
origin at (100,200), before drawing a (distorted) circle using our previous
"circle/0" example:

distort :-
gfx_begin( (fred,1) ),
gfx_mapping( 2, 1, 5, 3 ),
gfx_origin( 100, 200 ),
circle,
gfx_end( (fred,1  ).

Because the gfx*/n predicates only work with integer values, the desired
horizontal scaling of "2.5:1" is set as "5:2".

A third predicate, gfx_resolution/4, is used to obtain the pixel-per-inch and total
pixel resolution of the current device. Used in conjunction with gfx_mapping/
4, it facilitates the mapping of logical coordinates to physical measurements.
The following program sets up a mapping of 100 logical units per physical inch
in an existing device context:



WIN-PROLOG 4.2 - Win32 Programming Guide150

set_to_100dpi :-
gfx_resolution( Horz, Vert, _, _ ),
gfx_mapping( 100, 100, Horz, Vert ).

Similarly, the following sets up a device context so that its total area is divided
into 1024 logical units in both dimensions:

set_1024_across_and_down :-
gfx_resolution( _, _, Width, Depth ),
gfx_mapping( 1024, 1024, Width, Depth ).

A final predicate, which fits into the present category, is gfx_clipping/4. This
is used to define a clipping rectangle within the current device context, and is
useful for trimming graphics within a bounding box. When the existing device
context is already clipped (for example, when it has been obtained by a call to
gfx_paint/1 or where gfx_clipping/4 has already been called), this predicate
causes clipping to the union (overlap) of the existing clipping region and the
newly specified clipping rectangle.

GraFiX: Mouse Interaction

A number of mouse messages are sent to "Grafix" windows, and in certain types
of program, it is desirable to interact between graphics shapes and the cursor.
For example, a program that allows objects to be moved about with the mouse
needs to be able to tell when the cursor is over a particular object. The process
of detecting which part(s) of a graphic coincide with the cursor is known as "hit
testing", and it is supported with the gfx_begin/3 and gfx_end/3 predicates,
together with gfx_test/1. The gfx_begin/3 predicate sets up a special device
context, which causes gfx/1 calls to perform hit tests rather than actual output;
the gfx_end/3 predicate is used to terminate the test sequence, while gfx_test/
1 returns the number of "hits" so far at any point during the test. A "hit" is scored
when the cursor coordinates specified in the call to gfx_begin/3 impinge on an
object defined in a call to gfx/1; for example, the program:

fred_test( X, Y, Count ) :-
gfx_begin( (fred,1), X, Y ),
circle,
gfx_test( Count ),
gfx_end( (fred,1), X, Y ).

will test whether or not a given pair of cursor coordinates (X,Y) impinge upon
the circle drawn by "circle/0" in the "(fred,1)" window, returning a count of "1"
or "0" respectively.



WIN-PROLOG 4.2 - Win32 Programming Guide 151

GraFiX: Printer Control

Much has been made about the device independence of the GraFiX system, but
the physical differences between output devices, for example between windows
and the printer, require some additional support. The predicates required to set
up a user or dialog window, and to plant one or more "Grafix" controls in it, are
discussed in earlier chapters. For the printer, four simple predicates provide
equivalent functions, as described here. The printer is initialised with a call to
prnbox/4, specifying the name of the document, or to prnini/4, additionally
specifying the printer, its device driver and output port. Each new page is
requested by a call to prnpag/1, which returns the current page number after
ejecting any existing page. The status of a print job can be checked with prnstt/
1, which returns one of four values, as listed in Table 12.23:

Table 12.23 - Printer Status Values

Status Meaning

0 printer not initialised
1 printer ready with no current page
2 printer idle on current page
3 printer active on current page

Apart from setting up and handling page control with the printer, a printing
program is identical to a window-based GraFiX program. For example, to print
the "circle" example, a program could be written such as:

print_circle :-
prnini( 'Circle', 'HP Deskjet Plus', 'hpdskjet', 'lpt1' ),
prnpag( _ ),
gfx_begin( [] ),
circle,
gfx_end( [] ),
prnend( 0 ).

The call to prnini/4 sets up a document called "Circle" on a printer called "HP
Deskjet Plus", with printer driver "hpdskjet.drv" on the standard printer port
"lpt1". Different versions of Windows need different bits of this information: for
example, WinNT and Win95 ignore the driver argument ("hpdskjet"), while
Win3.1 with Win32s ignores the printer name ("HP Deskjet Plus"). Once
initialised, an initial page must be obtained with a call to prnpag/1; next, a printer
device context is obtained with a call to gfx_begin/1, this time passing an empty
list ("[]") as the argument to specify the printer, rather than a window. After
performing the graphics, the printer device context is returned with a call to
gfx_end/1, and the print job is completed with a call to prnend/1. The latter
predicate takes a single integer argument which specifies how to terminate the
print job, as shown in Table 12.15:



WIN-PROLOG 4.2 - Win32 Programming Guide152

Table 12.15 - Printer Termination Values

Command Meaning

0 terminate job normally, ejecting final page
1 terminate job abruptly, aborting pending pages

GraFiX: Window Control

Three predicates provide special support for "Grafix" windows, but are not
directly part of the GraFiX system as such. The first of these, gfx_window_cursor/
2, determines which cursor is displayed when the cursor is positioned directly
over the named "Grafix" window. For example, the call:

?- gfx_window_cursor( (fred,1), stock(cross_cursor) ).

will cause the "cross" stock cursor to be displayed automatically whenever the
cursor is over the "Grafix" window "(fred,1)". A second predicate,
gfx_window_redraw/5, explicitly invalidates a specified portion of a "Grafix"
window's client area before sending it a "MSG_PAINT" message. Provided that
an appropriate window handler is attached to the dialog or user window
containing the "Grafix" window, this message causes the latter to be redrawn.
The third predicate, gfx_window_scroll/3, scrolls the client area of a "Grafix"
window before sending it a "MSG_PAINT" message to request it to redraw the
newly exposed portions; once again, the latter function requires a suitable
window handler to be attached.

GraFiX: Device Contexts and Error Handling

As mentioned earlier, device contexts should be handled as scarce resources.
Most versions of Windows only support five such device contexts, which are
shared globally amongst all processes. For good behaviour, it is imperative that
an application not only keep its device contexts for as short a time as possible,
but also that it guarantees to restore them during error recovery. A well behaved
WIN-PROLOG program should call gfx_end/1 once for each corresponding call
to gfx_begin/1 and gfx_paint/1, but in the event of an error, this may not always
be possible; the gfx_cleanup/0 predicate allows programs restore all device
contexts in such cases, as shown in the following simple error handler:

'?ERROR?'( Error, Goal ) :-
writeq( Error - Goal ),
nl,
gfx_cleanup,
abort.

Omitting the call to gfx_cleanup/0 in a GraFiX program might result in device
contexts not being returned to Windows, possibly causing subsequent display
problems not just in WIN-PROLOG, but also in other concurrent processes.



WIN-PROLOG 4.2 - Win32 Programming Guide 153

Appendix A - Character Sets and Fonts

This appendix discusses the different character sets used by DOS and Windows,
and shows how these impinge both on the user and on WIN-PROLOG and its
programs.

ASCII, ANSI and the IBM PC Legacy

Versions of LPA-PROLOG up to 4.040 utilised a 256-character set based on
that in the IBM PC ROM BIOS. More correctly known as "Codepage 437", it
comprised of two halves: the lower 128 characters (characters 00h..7fh) of this
set conform to the 7-bit ASCII standard, but the upper half of the table,
(characters 80h..ffh), contain a mixture of accented letters, as well as the
majority of currency symbols and graphics characters which do not map onto
any accepted standard. Most importantly, the top half of Codepage 437 does
not map well either to the Windows "ANSI" character set, or to Unicode: for
example, the UK "Pound" sign ("£") is IBM PC code 9ch (156 decimal), while
in Windows and in Unicode it is ach (163 decimal).

The 32-bit Character Set, Unicode and ISO/IEC 8859-1

Starting in version 4.100, LPA-PROLOG has replaced the old 256-character set
with one containing over 4,000,000,000 characters: specifically, its internal
data structures now handle characters of up to 32-bit width, as opposed to the
old 8-bit characters. Full details of how this is done, without seriously impinging
on program size or memory usuage, can be found by reading Appendix L in
the main Technical Reference.

The first 128 characters are still mapped onto ASCII, a universally accepted 7-
bit character standard, but more importantly, it is within this set that reside all
characters with special meanings to LPA-PROLOG. Punctuation, graphic, digit,
bracket, quote and other special characters are all ASCII characters: in earlier
versions of the system, similar attributes were also assigned to characters in the
range 80h..0ffh, according to the character's meaning in Codepage 437. This
is no longer the case: these characters are now assumed to map to their Unicode
equivalents, which leads to the next standard...

The first 256 characters in LPA-PROLOG map directly to a standard called "ISO/
IEC 8859-1", which we will normally simply call "ISO" for the sake of brevity.
ISO is very similar to Windows "ANSI", with only a few character differing; ISO
is preferable to ANSI because it maps to the first 256 characters of Unicode.
The main difference between ISO and ANSI is that the former (like Unicode)
reserves character codes 80h..9fh for control purposes, while the latter assigns
certain characters, such as the Euro currency symbol, "C= "and the Trademark
Sign, "™", to within this range.



WIN-PROLOG 4.2 - Win32 Programming Guide154

With a few special exceptions, the first 1,000,000 or so characters in LPA-
PROLOG map directly to the "Unicode" standard. Originally conceived of as a
simple 16-bit character encoding, Unicode version 3.0 incorporates so-called
"surrogate pairs", comprising codes in the ranges 0d800h..0dfff, some bits of
which are extracted to make up 20-bit characters. In Unicode, these codes
cannot be used as characters in their own right, but  LPA-PROLOG has no such
restrictions for its internal 32-bit character set.

The remaining 4,000,000,000 or characters characters in LPA-PROLOG have
no current mapping, but will be assumed to map to future extensions to
Unicode; the full 32-bit character set is known in this documentation simply as
"RAW". The relationship between the various parts of the LPA-PROLOG

character set are described in Table A.1:

Table A.1 - Character Sets

Name Description

ASCII the first 128 characters, which are also part of...
ISO/IEC 8859-1 the first 256 characters, which are also part of...
Unicode the fist 1,000,000 or so characters, included in...
RAW all 232 characters supported by LPA-PROLOG

The Lexical Table

It has already been mentioned that versions of LPA-PROLOG up to 4.040
assigned special meanings to each of the first 256 characters, using their
Codepage 437 definitions to determine whether characters in the range
80h..ffh were letters, graphics or something else. The types of the characters
were stored internally in a 256-byte array, called the "lexical table". With the
advent of version 4.100, LPA-PROLOG's character set is extended not just to
the 1,000,000+ characters in Unicode, but to the 4,294,967,296 characters
supported by the new 32-bit character type.

Patently there is no way in which a lexical table could be used to assign special
types to each of more than four billion characters, so from version 4.100
onwards, the LPA-PROLOG lexical table has been cut to just 128 entries,
covering the 7-bit ASCII character set. All other characters, in the range
80h..FFFFFFFFh, are now assumed to be lowercase letters. This has a few,
mostly beneficial implications. Firstly, atoms containing arbitrary mixtures of
non-ASCII characters no longer need to be quoted, so programs can be written
more easily than before in non-English languages. Secondly, it removes the old
need to convert "ANSI" text into "OEM" (Codepage 437) text before compiling
or otherwise processing in LPA-PROLOG. The only consideration that needs
attention is where characters previously treated as graphics, such as the UK
Pound sign (£), are present in a previously unquoted atom. For example, the
following call will now generate a syntax error:



WIN-PROLOG 4.2 - Win32 Programming Guide 155

?- write( $£$ ). <enter>

Previously, bouth the dollar ($) and pound (£) characters were treated as graphic
symbols. The former is an ASCII character, and retains its assignment, but the
latter is ISO code a3h, which (like all other non-ASCII characters) is now treated
as a lowercase letter. So the above call must be written with quotes:

?- write( '$£$' ). <enter>

Conversely, a program that defined "£" as a prefix operator, so that the term
"£(123)" could be written without the brackets, such as in the call:

?- Price = £123. <enter>

now requires that at least one space is placed after the pound sign, because by
itself, "£123" is simply a single atom, just as is, say, "a123".

Old Source Files and the Codepage 437 Character Set

Files containing source code for LPA-PROLOG versions up to 4.040 might
contain characters in the range 80h..ffh, such as the UK Pound sign, but these
will be assigned to their Codepage 437 values, such as 9ch in this case. Such
files will display these characters incorrectly when loaded into WIN-PROLOG

4.100. An archaic predicte, ansoem/2, persists as a method of converting
between Codepage 437 (formerly called the "OEM" character set) and ANSI
(which, apart from a few characters, is the same as ISO/IEC 8859-1). This
predicate can be used to convert any non-ISO text into its correct new form.

New Source Files, ISO/IEC 8859-1 and Unicode

Source files under LPA-PROLOG version 4.100 and later are assumed to
contain characters which conform to their Unicode meanings. This is not to say
that all files must now contain Unicode, with its space implications (16-bit
characters, for example): it simply means that a file containing 8-bit characters
is assumed to map to the first 256 characters of Unicode, which in turn means
that this is an ISO/IEC 8859-1 ("ISO") file. Any such file containing nothing but
7-bit characters is also an ASCII file. The WIN-PROLOG 4.100 environment
recognises a range of Unicode file formats automatically, and loads these
accordingly. When saving files, the environment writes them as 8-bit ISO files
if possible, resorting to Unicode only when necessary.

Sorting and Term Comparison

Unicode specifies very complex rules regarding sorting and comparison in text,
but these are not applied within LPA-PROLOG itself. Instead, as it always has
done, this system sorts atoms and strings according to the character codes that
comprise their text. All that has changed is that these codes used to be unsigned
8-bit integers, and are now unsigned 32-bit integers.



WIN-PROLOG 4.2 - Win32 Programming Guide156

Appendix B - Text Data Types

This appendix discusses the string in relation to the other text data types in LPA-
PROLOG, namely atoms and char lists, because of the former's considerable
importance in Windows programming.

The Atom

Atoms, which are written using the single quote ('), or without quotation, are the
fundamental text objects in Prolog, and are used to name predicates, files,
windows, and so forth. In LPA-PROLOG, each atom occurs only once in
memory, stored in a special dictionary. References to this atom in code and data
structures are in the form of a simple 32-bit pointer. Each time an atom is
encountered on input, it must be searched for in the dictionary. If it is not found,
then a new atom is created, and its address stored in the input term. If it is found,
the address of the existing atom is stored.

Atoms are compact, but the need for lookup and dictionary maintenance takes
time whenever they are created, and forces an upper limit on their length,
namely 1024 bytes in LPA-PROLOG. On the plus side, because each atom
exists only once in the whole workspace, comparing two existing atoms for
identity is simple a matter of one 32-bit address comparison. Note that,
following the introduction of Unicode support and a 32-bit character set in LPA-
PROLOG 4.100, the 1024-byte limitation means an upper limit of between
204 and 1024 characters, depending on their size.

Atoms are used in Windows programming to name user windows and dynamic
link libraries, although in many cases they can also be used in place of strings
for other text parameters.

The Char list

Char lists, which are written using the double quote ("), are simply Prolog lists
in which each element contains a single 32-bit integer value corresponding to
the code for a character. Because each character occupies a list element,
together with overheads for type tags and pointers to link each list element with
the next, char lists require ten bytes for each character stored! One 64kb file
would need well over half a megabyte of heap space to represent this way!

Char lists have great flexibility, because standard Prolog list processing algorithms
can be used to manipulate their contents, and are limited in length only by the
size of the available heap, theoretically up to 4Gb in LPA-PROLOG, but their
considerable memory overhead makes them clumsy, and they are not used for
Windows programming.



WIN-PROLOG 4.2 - Win32 Programming Guide 157

The String

Strings, which are written using the backward quote (`), provide a useful solution
to the dilemma of how best to handle text in LPA-PROLOG. They are more
flexible than atoms, being able to reach any length right up to the limits of
available space in the text heap, and more compact than char lists, requiring on
average around 1.3 bytes storage per character. Each time a string is encountered
on input, it is created from scratch: thus two identical strings on an input term
will result in two copies of the text being stored. Comparing strings is very quick
when they are different: their lengths and initial few characters usually indicate
the mismatch immediately; when two identical strings are compared, however,
a complete character-for-character matching must be carried out.

Because no attempt is made to look strings up in a dictionary, they can be
created more quickly than atoms. By sharing the atom's text storage mechanism,
they do not use up heap space, and their compactness is a great advantage over
char lists. For these reasons, many of the low level input/output features of LPA-
PROLOG, including text operations in conjunction with windows, use strings as
the data transfer medium.

Uses of Strings and Atoms in Windows

Atoms, as has been mentioned above, are used to name objects in Prolog. For
example, files, predicates, windows and dynamic link libraries are named by
atoms. Because of their limited length (1024 bytes, 204-1024 characters) in
LPA-PROLOG), atoms are not ideal for representing larger amounts of data.
Strings, on the other hand, can contain an indefinite number of characters in
LPA-PROLOG. Both atoms and strings can be made up of bytes of any value.

Many Windows functions work together with strings at the C level. In C, strings
are packed arrays of characters terminated with a null (zero) character. In
interfacing between WIN-PROLOG and Windows, it is often necessary to pass
text to and from the operating system. While atoms could have been used to
transfer such data, their limited maximum length would involve breaking up text
transfers into numerous smaller calls. LPA-PROLOG's strings provide a natural
solution, since their capabilities actually exceed those of C's.

When a text parameter is passed from WIN-PROLOG to the underlying
Windows system, the Prolog string is copied into a buffer in C string format,
replacing any embedded null characters (which would appear to C as the end
of the string) with spaces. Once Windows has performed its functions any
resulting output strings are copied back to Prolog. Buffers, and their associated
predicates, are described in Appendix G.

Character Encoding in Strings and Atoms

As has been mentioned in various places in this manual, LPA-PROLOG has



WIN-PROLOG 4.2 - Win32 Programming Guide158

introduced 32-bit characters to all its text types, principally in the full support
of Unicode. The concerned reader might wonder how this affects text storage
requirements within LPA-PROLOG itself: fortunately, for existing applications,
the hanswer is that it hardly makes any difference, as we will explain here.

Characters in the range 00h..FDh, which includes all but two of the 8-bit ISO/
IEC 8859-1 ("ISO") character set (and therefore the whole of ASCII) are stored,
as before, one byte at a time in strings and atoms. Characters in the range
FEh..FFFFh are stored using feh as a tag byte, with the actual code occupying
the next two bytes of memory. The remaining characters, in the range
10000h..FFFFFFFFh, are stored using ffh as a tag byte, with the actual code
occupying the next four bytes.

In short, this means that an atom containing all 256 8-bit ISO characters
requires 254*1+2*3, or 260 bytes of text storage, compared with 256 bytes in
older, pre-4.100 versions of LPA-PROLOG: this is an overhead of about 1.56%
for random 8-bit binary data! Furthermore, any 8-bit text which avoids using the
two characters, "thorn" and "y-umlaut" ("ÿ" and "þ" respectively), which includes
most English and European text, requires exactly the same amount of storage
in the new 32-bit character set model as in the previous 8-bit model: truly a case
of something for (next to) nothing!

Optional and Compulsory Atoms and Strings

Some window handling predicates give you the option of using either strings or
atoms, especially where the length of text item being processed is likely to
remain short, for example with the text parameters of msgbox/4 and sttbox/2,
but in most cases, you are forced to use strings or atoms for specific arguments.

In general, atoms are used for text items which are names, such as typefaces,
window classes and filenames, and strings are used for general text parameters,
such as the contents of an edit control or displayed title of a window. Predicates
such as wcreate/8 clearly illustrate this point; the call:

?- wcreate(fred,dialog,`Freddie`,...).

gives "fred" (an atom) as the Prolog name for a window, "dialog" (another atom)
as the class of window, and "`Freddie`" (a string) as its title. When you get or set
a dialog title with wtext/2, the same types are used; the call:

?- wtext(fred,`Bloggs`).

changes the title of a window called "fred" (an atom) to the new value "`Bloggs`"
(a string).



WIN-PROLOG 4.2 - Win32 Programming Guide 159

Appendix C - Programming Considerations

This appendix discusses some of the special considerations that should be borne
in mind when writing for the Windows environment, especially with regards to
the comparative simplicity of DOS.

Multitasking and Good Behaviour

The single biggest difference between Windows and DOS is that the former is
a multitasking operating system. Within the constraints of memory, disk space
and processor performance, large numbers of applications may simultaneously
be running on a single processor, sharing hardware resources such as screen,
disk and printer devices, as well as memory. It is important that applications are
"well behaved", and are not selfish in their use of such resources, since one such
program could bring the rest of Windows down onto its knees.

While WIN-PROLOG is a well behaved application, there is nothing to stop you,
the Prolog programmer, writing code which would seriously affect the
performance of other applications: under certain circumstances, you could even
cause earlier (Win16) versions of Windows to hang indefinitely. While an
exhaustive list of "do"s and "don't"s is beyond the scope of this manual (and there
are plenty of good books available about how to write Windows applications),
some of the more basic points deserve a little discussion. The remaining sections
of this appendix outline just some such points.

Relinquishing Control

Although later (Win32) versions of Windows, such as WinNT and Win95/98,
can perform preemptive multitasking, earlier (Win16) versions, such as Win3.1n,
cannot: in order for multiple applications to run with Win16, each application
has to yield control to Windows at regular intervals. The innermost control
sequence in WIN-PROLOG yields to Windows once every 256 predicate calls
(DOS-PROLOG checks DOS keyboard status for detection of <ctrl-break> with
the same frequency); in addition, such relinquishement is performed by certain
I/O operations, such as the flushing of the console window output buffer or the
reading or writing of blocks of data from or to disk files.

Once optimised, many programs perform predicate calls considerably less often
than when they are incrementally compiled. For example, the sequence:

repeat, fail.

in incremental code is compiled as: "call repeat/0, call fail/0". The repeat
predicate itself is defined as:



WIN-PROLOG 4.2 - Win32 Programming Guide160

repeat.
repeat :- repeat.

which, were it in incremental mode, will have been compiled as: "either succeed,
or call repeat/0". In a fully incrementally compiled system, the "repeat,fail"
sequence would perform two predicate calls per backtracking iteration, and
repeat/0 would in turn call itself once, so submitting to Windows approximately
every 85th (256/3) cycle.

When optimised, repeat/0 is compiled using a fast, direct "goto" instruction in
place of its second clause, in effect, "either succeed or start over", and in the
sequence "repeat,fail", the call to fail/0 is replaced by an explicit Prolog machine
"fail" instruction. The result is that, when fully optimised, "repeat,fail" never
yields control to Windows, because no predicate calls are being made.

Running an optimised program which contains "repeat,fail" will cause LPA-
PROLOG to hang, whether under Windows or DOS. Fortunately, with Win32
and DOS, it is just your Prolog program that hangs, but in the case of Win16,
because control is never yielded and Win16 cannot perform preemptive
multitasking, the entire Windows session will hang. In the latter case, your only
option will be to reboot the computer using <ctrl-alt-del>.

The "repeat/fail" operation is obviously a degenerate case, since such a
program serves no useful purpose: the more likely "repeat,<do something>,fail"
sequence is perfectly alright, since the "<do something>" component will
involve at least one predicate call per cycle.

Optimised Tail Recursion

Another type of optimised program can cause problems when optimised,
namely a program with a clause of the general form:

foo(...) :-
foo(...).

Again, when incrementally compiled, the code includes a "call foo/n" instruction,
able to yield control once every 256 iterations; when optimised, however, a
direct "goto" instruction is used in place of the recursive call, in effect, "to do foo,
start over", and again WIN-PROLOG will not yield control. Provided that there
is at least one other predicate call in the program, ie: "foo(...) :- <do something>,
foo(...).", then there will be no problem.

Typical cases where problems could arise include standard predicates such as
append/3, member/2 and other list processing programs. Once optimised,
these programs will not relinquish control during their execution. Programs like
reverse/2 (if implemented as naive reverse) do not pose problems, because they
call another predicate (append/3 in this case) once per iteration.



WIN-PROLOG 4.2 - Win32 Programming Guide 161

It is unlikely that anything other than the degenerate program "foo :- foo." will
actually cause WIN-PROLOG to hang, because unless programs like append/3
and member/2 are given extremely large lists, they will complete their processing
in a very short time. The worst that normally occurs in programs using such
optimised predicates excessively is that Windows feels a little sluggish.

Explicit Yielding of Control

Because WIN-PROLOG automatically yields control to Windows on a regular
basis, there is normally no need to call an explicit "yield" predicate: there are
times, however, when you might want to surrender control more often than the
standard once per 256 predicate calls; this section describes how to do this.

Under Windows, the keyboard (console input) device is driven by messages, so
WIN-PROLOG has to yield control to Windows whenever keyboard input is
attempted. This leads to the first method of yielding control: any calls you make
to read/1,  get/1 and so forth from the user device will allow Windows to process
other tasks until you confirm your input by pressing <enter>.

As well as the user device, which is buffered (it waits for a line of input to be typed
and then confirmed with <enter>), you can also yield control by using the direct
keyboard input predicate getb/1. This does not wait for <enter> to be hit, but
still yields control to Windows until you press a key or mouse button.

The third method of yielding control is the most useful in a running application,
and involves the wait/1 predicate. This predicate is designed to yield to windows
at least once, and optionally to yield repeatedly until at least one message has
been received by WIN-PROLOG. Usually it is called with zero (0) as its argument.
In "repeat,fail", or other computationally intensive loops, you might consider
inserting a call to wait/1 as follows:

foo :-
repeat,
wait( 0 ),
fail.

or:

foo :-
wait( 0 ),
foo.

These examples are guaranteed to yield to Windows at least once per iteration,
rather than once every 256 predicate calls or perhaps even never (see above).
Even in Win32, calling wait/1 in a tight loop is necessary to reduce processor
overhead, and to free the processor for other applications.



WIN-PROLOG 4.2 - Win32 Programming Guide162

File Management

There is no direct support for shared file access in LPA-PROLOG: files are
opened in a "deny access" mode, so while a Prolog program is processing any
given file, no other applications can use it. Under DOS, this is only ever a
consideration when writing network-aware programs, but under Windows, all
programs should be written with this in mind.

It is recommended that files are opened for as short a time as possible,
performing the I/O immediately after opening the file, and then closing the file
until next needed. Since LPA-PROLOG has powerful random access pointer
predicates, and its string data type (see Appendix B) provides the ability quickly
to read or write large blocks of data from or to disk files, in most cases there is
no need to keep files open for more than a few seconds at a time.

The Keyboard and Focus

Windows only permits keyboard input to one window at a time, and it should
be left to the user to decide which window receives attention: focus should not
be changed at random by the application. Predicates such as wfocus/1 and
wshow/2 should therefore be used with discretion, since they switch focus
between windows, even if the user is in another application at the time. For
example, type the command (as always, type the bold characters only):

?- wcreate(fred,button,`GREEDY`,100,100,100,100,16'90010000),
repeat, wfocus(fred), fail. <enter>

The result is a "desktop" button appearing on the screen, as shown in Fig C.1.

Fig C.1 - Greedily grabbing focus with a desktop button



WIN-PROLOG 4.2 - Win32 Programming Guide 163

Because each time wfocus/1 is called within the repeat/fail loop, focus is forced
back to the button, it is now virtually impossible to get control back to the WIN-
PROLOG console. Fortunately, in WinNT and Win95/98, it is at least possible
to run other applications while this loop is running; for example, try invoking
the Windows control panel, as shown in Fig C.2.

In Windows 3.1, even if you click on a Program Manager menu item, you will
lose control before being able to select an option unless you are very quick.
Luckily, WIN-PROLOG can be interrupted when any of its windows or controls
is in focus: press <ctrl-break> to stop this program, as shown in Fig C.3.

The Mouse and the Cursor

As with focus, Windows only supports one cursor. Normally this is controlled
by the mouse, although depending upon the application it might also be
controlled by keyboard input. the cursor is normally sensitive to the context in
which it is being displayed, but when a Windows application is busy, this
behaviour can be overridden, and the cursor forced into a fixed, and inactive
hourglass shape. The busy/1 predicate can be used to create an hourglass (busy)
or normal (idle) cursor from within Prolog programs, and you should be aware
when the hourglass cursor is enabled, the user cannot switch applications,
operate menus, or perform keyboard input.

Like the wfocus/1 predicate and ???box/n dialogs, busy/1 allows you to hijack
the cursor when another application has focus. You could, if you wanted to,
simply set the hourglass willy-nilly, but a more constructive approach is to wait
until you know that WIN-PROLOG is in control, and then set it. A simple test is
to use the fact that windows created by WIN-PROLOG have handles which are

Fig C.2 - Result of running the Windows control panel



WIN-PROLOG 4.2 - Win32 Programming Guide164

either atoms, or conjunctions of atoms and integer ID codes. Windows created
elsewhere than by WIN-PROLOG have simple integer handles, and these
handles are always greater than the low integers (0 and 1) used by the built-in
windows. By retrieving the current focus, and waiting for the returned handle
to be either a non-integer, or one of the special values (0 and 1), you could write
a program such as the following:

wait_for_focus :-
repeat,
wait( 0 ), % yield every repeat/fail
wfocus( F ), % get focus
( integer( F ) % if it is an integer
-> member( F, [0,1] ) % then is it one of ours?
; true) % else it is ours anyway
),
!.

This would wait for the user to switch focus to one of WIN-PROLOG's windows,
and would then return immediately. Calling this program immediately before
calls to busy/1, wfocus/1 or wshow/2 in their "set" modes can help ensure user-
friendly behaviour which does not interrupt other applications.

Buffered Console Output

As a console, Windows is extremely powerful, with its rich GUI and many
modeless activities, but there is a penalty to be paid: text I/O is slow, in fact many
hundreds of times slower than under DOS. The major overhead is on a per-
operation basis, rather than on the size or complexity of that operation. Under

Fig C.3 - Interrupting the greedy loop with <ctrl-break>



WIN-PROLOG 4.2 - Win32 Programming Guide 165

DOS, each byte that your Prolog program attempts to display on the screen is
immediately shown, yet DOS-PROLOG can achieve output rates approaching
17500 characters of output per second on a 25MHz 386. Under Windows,
trying to display each character in turn would limit output to around 25
characters per second on the same machine!

To make the rate of output to the console window acceptable, output is stored
in a buffer, which is flushed only occasionally. Even flushing once per line is too
slow for comfort, so the buffer is flushed only when full, when a read operation
is initiated from the keyboard, or when a program forces a flush. The size of the
console output buffer is 1kb (1024 bytes). If you type in a command such as:

?- free(B,L,R,H,T,P,S,I,O). <enter>

you will notice that the output appears all at once, together with the next
prompt, as shown in Fig C.4. Although fewer than 1024 characters have been
output, the call by WIN-PROLOG's supervisor loop to read your next command
forced the output buffer to be flushed.

The only time that you need to be aware of flushing is during console window
output which is not going to be followed by a keyboard input operation, such
as diagnostic messages, or status reports during a computation. All you need to
do to flush the output buffer is to call the ttyflush/0 predicate, or alternatively
to write the end of file character, <ctrl-Z> or character code 1ah, to the console
window. Create a new program window using the "File/New" menu option, and
enter the following code:

fast( 0 ).

Fig C.4 - Instant display of several lines of output



WIN-PROLOG 4.2 - Win32 Programming Guide166

fast( Number ) :-
write( Number ),
nl,
Less is Number - 1,
fast( Less ).

slow( 0 ).
slow( Number ) :-

write( Number ),
nl,
ttyflush,
Less is Number - 1,
slow( Less ).

Once you have typed it in, as shown in Fig C.5, compile it using the "Run/
Compile" menu option, and then click back on the console window. Type in the
command:

?- fast(10). <enter>

You will see 10 numbers appear virtually simultaneously on the screen. Now
type the command:

?- slow(10). <enter>

The same 10 numbers will appear, but much more slowly, because each line of
output is being flushed to the console window in turn, as shown in Fig C.6.

Fig C.5 - Entering the fast/1 and slow/1 programs



WIN-PROLOG 4.2 - Win32 Programming Guide 167

Executing External Applications

One of the features of WIN-PROLOG is its ability to execute other applications
using its exec/3 predicate, or dos/n predicates. Under DOS, the exec/3
predicate waits for the external program to complete its operations, before
returning its numerical exit code. Under Windows, which is a multi-tasking
environment, exec/3 returns control immediately, with an exit code of 0, and
the external application continues to run in parallel with WIN-PROLOG.

If the external application is expected to perform some file output, and these files
are to be used by a Prolog program, then with WIN-PROLOG, care must be
taken to wait for the external program to complete. One way in which to arrange
this would be to have the application create a temporary file, with a name such
as "ALLDONE.$$$", just before it terminated. You could then use some Prolog
code along the following lines to process the application:

run_app :-
exec( 'c:\bin\myapp.exe', '', _ ),
repeat,
wait( 0 ),
dir( 'c:\bin\alldone.$$$', -32, Dir ),
Dir \= [],
del( 'c:\bin\alldone.$$$' ),
!.

Of course, there would be nothing to stop your Prolog program from doing
some useful work while waiting for the external application to complete.

Fig C.6 - Output from the fast/1 and slow/1 programs



WIN-PROLOG 4.2 - Win32 Programming Guide168

Appendix D - Window Styles

This appendix discusses the styles of windows, and describes some special
purpose predicates which enable you to use symbolic names, rather than 32-
bit integers, as the styles of windows you create.

Window Styles: 32-bit Integers

Every window in the Windows environment has an associated "style" field, which
consists of 32 bits or flags governing the window's appearance and behaviour.
For example, dialog windows can be created with a variety of borders, with or
without system menus, maximise/restore and minimise buttons; edit controls
can be created single- or multi-line, with or without horizontal and/or vertical
scroll bars. Throughout the rest of this manual, various examples have made
references to specific style combinations; the full range of window styles
supported in Windows is outlined later in this appendix.

Hexadecimal Notation

Because window styles can be combined using the bitwise "or" operation to
produce compound styles, it is preferable to describe styles using a non-decimal
notation. The one used throughout the rest of this manual is "hexadecimal" (base
16), where the numerals 0..9 and letters A..F refer to the hexadecimal digits
0..15 respectively. Just as the decimal number:

128

means "1*(10^2) + 2*(10^1) + 8*(10^0)", so the hexadecimal number:

12A

means "1*(16^2) + 2*(16^1) + A*(16^0)", where "A" means "10". In LPA-
PROLOG, you can write any integer in any base between 2 (binary) and 36, by
using a special notation in which the desired base is written in decimal, followed
by an apostrophe, and then the number itself. For example, the hexadecimal
number "3B2" would be written:

16'3B2

When LPA-PROLOG encounters "16'" on input, it prepares to read a hexadecimal
number, in this case "3B2". Note that the case of letter digits is not significant.

In this example, the number is calculated as "2 + 16 * (B + 16 * (3))", where "B"
means "11", giving the integer "946". In fact, were you to type the query:



WIN-PROLOG 4.2 - Win32 Programming Guide 169

?- X = 16'3B2. <enter>

you would get the result "X = 946". Hexadecimal (and other base) notation is
simply a convenient way of entering standard integers. The same number could
have been entered in "octal" (base 8):

?- X = 8'1662. <enter>

or even in binary (base 2):

?- X = 2'1110110010. <enter>

It does not matter which base you use for defining styles, because as was noted
above, all such bases map directly down onto ordinary Prolog integers; however,
the bases 16, 8 and 2 are more convenient than 10 (decimal) when calculating
the combination of style values. For example, to combine the styles "WS_CHILD",
"WS_VISIBLE" and "WS_THICKFRAME" in decimal would require you to "or"
the values:

1073741824 (WS_CHILD)
  268435456 (WS_VISIBLE)
        262144 (WS_THICKFRAME
---------------------------
1342439424 (combined style)

Using hexadecimal numbers, the combined style could be computed far more
easily:

16'40000000 (WS_CHILD)
16'10000000 (WS_VISIBLE)
16'00040000 (WS_THICKFRAME)
---------------------------
16'50040000 (combined style)

As you can see, the arithmetic is far simpler in hexadecimal notation, and it is
easy to see which styles have been combined in the result. For these reasons,
all style values in the following sections are given in hexadecimal notation.

Generic Window Styles

A number of styles can be applied to windows of more than one type, and in
some cases, to windows of all types. The names for these "generic" window
styles are identified with the prefix "WS_", and are listed in Table D.1.



WIN-PROLOG 4.2 - Win32 Programming Guide170

Table D.1 - Generic Window Styles

Symbolic Name Hexadecimal Value

WS_OVERLAPPED 16'00000000
WS_POPUP 16'80000000
WS_CHILD 16'40000000
WS_CLIPSIBLINGS 16'04000000
WS_CLIPCHILDREN 16'02000000
WS_VISIBLE 16'10000000
WS_DISABLED 16'08000000
WS_MINIMIZE 16'20000000
WS_MAXIMIZE 16'01000000
WS_CAPTION 16'00C00000
WS_BORDER 16'00800000
WS_DLGFRAME 16'00400000
WS_VSCROLL 16'00200000
WS_HSCROLL 16'00100000
WS_SYSMENU 16'00080000
WS_THICKFRAME 16'00040000
WS_MINIMIZEBOX 16'00020000
WS_MAXIMIZEBOX 16'00010000
WS_GROUP 16'00020000
WS_TABSTOP 16'00010000

Button Control Styles

A number of styles apply specifically to "Button" controls. In general, these styles
cannot be combined, but rather they enumerate which of a number of specific
types of button is created. The names for button styles are identified with the
prefix "BS_", and are listed in Table D.2.

Table D.2 - Button Control Styles

Symbolic Name Hexadecimal Value

BS_PUSHBUTTON 16'00000000
BS_DEFPUSHBUTTON 16'00000001
BS_CHECKBOX 16'00000002
BS_AUTOCHECKBOX 16'00000003
BS_RADIOBUTTON 16'00000004
BS_3STATE 16'00000005
BS_AUTO3STATE 16'00000006
BS_GROUPBOX 16'00000007
BS_USERBUTTON 16'00000008
BS_AUTORADIOBUTTON 16'00000009
BS_OWNERDRAW 16'0000000B
BS_LEFTTEXT 16'00000020



WIN-PROLOG 4.2 - Win32 Programming Guide 171

Edit Control Styles

A number of styles apply specifically to "Edit" controls. Like the generic styles,
these can be combined to produce compound styles. The names for edit styles
are identified with the prefix "ES_", and are listed in Table D.3.

Table D.3 - Edit Control Styles

Symbolic Name Hexadecimal Value

ES_LEFT 16'00000000
ES_CENTER 16'00000001
ES_RIGHT 16'00000002
ES_MULTILINE 16'00000004
ES_UPPERCASE 16'00000008
ES_LOWERCASE 16'00000010
ES_PASSWORD 16'00000020
ES_AUTOVSCROLL 16'00000040
ES_AUTOHSCROLL 16'00000080
ES_NOHIDESEL 16'00000100
ES_OEMCONVERT 16'00000400
ES_READONLY 16'00000800
ES_WANTRETURN 16'00001000

Listbox Control Styles

A number of styles apply specifically to "Listbox" controls. Like the generic
styles, these can be combined to produce compound styles. The names for
listbox styles are identified with the prefix "LBS_", and are listed in Table D.4.

Table D.4 - Listbox Control Styles

Symbolic Name Hexadecimal Value

LBS_NOTIFY 16'00000001
LBS_SORT 16'00000002
LBS_NOREDRAW 16'00000004
LBS_MULTIPLESEL 16'00000008
LBS_OWNERDRAWFIXED 16'00000010
LBS_OWNERDRAWVARIABLE 16'00000020
LBS_HASSTRINGS 16'00000040
LBS_USETABSTOPS 16'00000080
LBS_NOINTEGRALHEIGHT 16'00000100
LBS_MULTICOLUMN 16'00000200
LBS_WANTKEYBOARDINPUT 16'00000400
LBS_EXTENDEDSEL 16'00000800
LBS_DISABLENOSCROLL 16'00001000



WIN-PROLOG 4.2 - Win32 Programming Guide172

Combobox Control Styles

A number of styles apply specifically to "Combobox" controls. Like the generic
styles, most of these can be combined to produce compound styles; some,
however, are used to enumerate which of several types of combobox is created,
and these styles cannot be combined with each other. The names for combobox
styles are identified with the prefix "CBS_", and are listed in Table D.5.

Table D.5 - Combobox Control Styles

Symbolic Name Hexadecimal Value

CBS_SIMPLE 16'00000001
CBS_DROPDOWN 16'00000002
CBS_DROPDOWNLIST 16'00000003
CBS_OWNERDRAWFIXED 16'00000010
CBS_OWNERDRAWVARIABLE 16'00000020
CBS_AUTOHSCROLL 16'00000040
CBS_OEMCONVERT 16'00000080
CBS_SORT 16'00000100
CBS_HASSTRINGS 16'00000200
CBS_NOINTEGRALHEIGHT 16'00000400
CBS_DISABLENOSCROLL 16'00000800

Scrollbar Control Styles

A number of styles apply specifically to "Scrollbar" controls. Like the generic
styles, these can be combined to produce compound styles. Note that there is
duplication in the styles: horizontal and vertical scrollbars use "left/right" and
"top/bottom" names respectively, but these map onto the same style values.
The names for scrollbar styles are identified with the prefix "SBS_", and are listed
in Table D.6.

Table D.6 - Scrollbar Control Styles

Symbolic Name Hexadecimal Value

SBS_HORZ 16'00000000
SBS_VERT 16'00000001
SBS_TOPALIGN 16'00000002
SBS_LEFTALIGN 16'00000002
SBS_BOTTOMALIGN 16'00000004
SBS_RIGHTALIGN 16'00000004
SBS_SIZEBOXTOPLEFTALIGN 16'00000002
SBS_SIZEBOXBOTTOMRIGHTALIGN 16'00000004
SBS_SIZEBOX 16'00000008



WIN-PROLOG 4.2 - Win32 Programming Guide 173

Static Control Styles

A number of styles apply specifically to "Static" controls. In general, these styles
cannot be combined, but rather they enumerate which of a number of specific
types of static control is created. The names for static control styles are identified
with the prefix "SS_", and are listed in Table D.7.

Table D.7 - Static Control Styles

Symbolic Name Hexadecimal Value

SS_LEFT 16'00000000
SS_CENTER 16'00000001
SS_RIGHT 16'00000002
SS_ICON 16'00000003
SS_BLACKRECT 16'00000004
SS_GRAYRECT 16'00000005
SS_WHITERECT 16'00000006
SS_BLACKFRAME 16'00000007
SS_GRAYFRAME 16'00000008
SS_WHITEFRAME 16'00000009
SS_SIMPLE 16'0000000B
SS_LEFTNOWORDWRAP 16'0000000C
SS_NOPREFIX 16'00000080

Grafix Control Styles

Unlike the other control types, there are no special window styles which apply
specifically to "Grafix" controls. In general, these windows can use any of the
generic window styles.

Dialog Pseudostyles

In addition to the generic window styles, three special "pseudostyles" are
provided by WIN-PROLOG for use when creating dialogs. These are not
recognised by Windows itself, but are used to define the ownership of dialogs,
and which of two border types to use. The symbolic names for the dialog
pseudostyles are identified with the prefix "DLG_", and are listed in Table D.8.

Table D.8 - Dialog Pseudostyles

Symbolic Name Hexadecimal Value

DLG_OWNEDBYDESKTOP 16'00000000
DLG_OWNEDBYPROLOG 16'00000001
DLG_MODALFRAME 16'00000002



WIN-PROLOG 4.2 - Win32 Programming Guide174

Symbolic to Integer Conversion

Even using hexadecimal notation, the computation of compound window styles
is a little tricky, and can lead to programming errors. To make life easier,  there
are two built-in predicates which perform this step for you. The first, wdcreate/
7, is used to create dialogs. There is no class argument (this would always have
had the value "dialog"), and the style can be given in symbolic form. The call:

?- wdcreate(fred,`Freddie`,200,250,400,225,[ws_popup,ws_caption]).
<enter>

creates a "dialog" window called "fred", with the given name and size, using the
styles "WS_POPUP" and "WS_CAPTION", which compute to produce the
hexdecimal style 16'80C00000; this call is directly equivalent to:

?- wcreate(fred,dialog,`Freddie`,200,250,400,225,16'80c00000).
<enter>

A similar predicate, wccreate/8, is used to create controls. This time, the class
name must be included, since there are several different control classes. The call:

?- wccreate((fred,1),button,`OK`,10,150,80,32,[ws_child,ws_visible]).
<enter>

creates a button with combined styles "WS_CHILD" and "WS_VISIBLE", which
compute to the hexadecimal style, 16'50000000, and is equivalent to:

?- wcreate((fred,1),button,`OK`,10,150,80,32,16'50000000).
<enter>

For completeness, and convenience, two more built-in predicates, wtcreate/6
and wucreate/6 are included to create "text" and "user" windows respectively.
These predicates omit both the class name and the style, the latter not being
significant in MDI windows.



WIN-PROLOG 4.2 - Win32 Programming Guide 175

Appendix E - Window Classes

This appendix discusses the classes of windows, and describes those which can
be created by WIN-PROLOG, as well as some of the predicates used to retrieve
and manipulate classes.

Window Classes and Pseudoclasses

Every window in the Windows environment belongs to a "class", which describes
which basic type of window it is. Classes such as "Button", "Edit" and "Listbox"
are predefined in Windows, and provide the framework for the controls of these
same types; other classes are defined by applications themselves, and include
support for the "text" and "user" windows in WIN-PROLOG. When you create
a window, you specify the class name as the second argument to wcreate/8:

?- wcreate((fred,1),button,...).

creates a control of the "Button" class within the window "fred". There is,
however, one type of window which you create using a "pseudoclass" rather
than a class as the second argument. A pseudoclass is simply a descriptive word
which is interpreted directly by WIN-PROLOG, and which may result in a
window being created with a class named completely differently. The only
example of a pseudoclass in the current version of WIN-PROLOG is the "dialog".

You can retrieve the true class of any window with the wclass/2 predicate. For
example, the call:

?- wclass((1,1),X). <enter>

will return the value "X = 'Edit'", which is the class of the console window edit
control, "(1,1)".

When searching for top-level windows using the wfind/3 predicate, you can
specify the window class as the first argument. If you wish to omit the class name
as a search parameter, simply specify an empty atom. Thus the call:

?- wfind(foo,`bar`,X). <enter>

will search the desktop for a window of class "foo", and name "`bar`", while:

?- wfind('',`bar`,X). <enter>

will simply search for a window named "`bar`", without checking for any
particular class.



WIN-PROLOG 4.2 - Win32 Programming Guide176

User Window Classes and Pseudoclasses

There are nine true window classes and one pseudoclass which can be used
when creating windows in WIN-PROLOG, with each one corresponding to one
of the two types of MDI window, the dialog window class, or the seven types of
control window, as listed in Table E.1.

Table E.1 - The Window Classes and Pseudoclasses

Class Description

text mdi child window with built-in edit control
user mdi child window with no controls
grafix WIN-PROLOG-defined graphics window
dialog pseudoclass describing dialog windows
button push buttons, radio buttons, checkboxes
combobox edit control with single choice list box
edit all types of edit control
listbox single or multiple choice list box
scrollbar scroll bar
static static text or icon window

Predefined Window and Pseudoclass Classes

Each of the predefined windows in WIN-PROLOG has an associated class name,
as does each pseudoclass. These class names should not be used when creating
windows, since the results will be unpredictable, but are listed in Tables E.3 and
E.4 for the sake of completeness.

Table E.3 - Classes of Predefined Windows

Window Class Comment

0 Main WIN-PROLOG main window
(0,1) MDIClient WIN-PROLOG MDI client window
1 Cons WIN-PROLOG console window
(1,1) Edit WIN-PROLOG console edit control

Table E.4 - Classes of Pseudoclasses

Pseudoclass Class Comment

dialog #32770 Windows class name for "dialog" window



WIN-PROLOG 4.2 - Win32 Programming Guide 177

Appendix F - Initialisation Files

This appendix discusses the use of initialisation files, and describes a special
predicate, profile/4, which enables you to read and write entries in such files.

Persistent Data: the .INI File

Most Windows applications maintain certain types of data between sessions,
such as the size, position and state of each window, or the user's preferred font,
language and backup mode. Such information is stored in "initialisation" files,
which usually have the extension ".INI". The best known .INI file of them all is
the "WIN.INI" file which Windows maintains, and which contains dozens of
entries covering everything from mouse sensitivity to currency settings, sound
event assignments to desktop wallpaper, and so forth.

While many applications add their own entries to WIN.INI, it is increasingly the
norm for programs to maintain their own, private initialisation files. If you look
in the typical Windows directory, you might see, alongside WIN.INI, files like
CLOCK.INI, CONTROL.INI, MOUSE.INI and so forth. Each contains
initialisation data for the application file with the corresponding ".EXE" name.

Files, Sections and Entries

Any given piece of initialisation data can uniquely be identified by a combination
of three items of information: its corresponding file, section and entry names,
as outlined in the next three paragraphs.

Typically, the file is either WIN.INI, or is named after the application: for
example, in an application called "FOO", where the main executable file was
"FOO.EXE", the .INI file would reside in the same directory as FOO.EXE, and
would be called "FOO.INI".

The section is a portion of the file labelled by a word in square brackets ([...]),
and is used to group pieces of information about a particular subject, for
example "printing", "colours", and so forth. The section titles are entirely at the
discretion of the application.

The entry is a particular item of information, and is of the form: "name=value".
As with section titles, the names and values, are entirely at the discretion of the
application. Below is a sample portion from a .INI file:

[printer]
current=hp550c
pagesize=a4
font=courier,12,0



WIN-PROLOG 4.2 - Win32 Programming Guide178

[screen]
current=vga
font=oem,12,0

There are two sections, labelled "printer" and "screen". Both have "current" and
"font" entries, and the printer section also has a "pagesize" entry. The meaning
of this information is entirely up to the application which created and maintains
the .INI file: there are no reserved words or special system commands here.

Reading and Writing Data in .INI files

You can read data from, and write data to, .INI files, using the profile/4
predicate. This predicate completely bypasses WIN-PROLOG's normal file
handling, and hands your I/O requests directly over to special Windows
functions. The first three arguments of profile/4 are the file, section and entry
values described above, and may be specified as atoms or strings. The fourth
argument may be a variable, to return the existing value, or an atom or string
to set a new one. Suppose, for example, that the sequence above was stored
in a file called "FOO.INI". You could pick up the current screen type by making
the call:

?- profile('foo.ini',screen,current,X). <enter>

This would return the value "X = vga". Similarly, you could set a new page size
for the printer with the call:

?- profile('foo.ini',printer,pagesize,letter). <enter>

This would replace the "pagesize=a4" entry with a new one stating
"pagesize=letter". Again, it should be stressed that these entries are meaningless
until interpreted by an application. So long as you do not alter the .INI files of
other applications, you can experiment freely with the profile/4 predicate.

Note that the file, section and entry names are not case sensitive: you can use
any mix of upper and lower case letters when specifying them. If a given file,
section or entry name does not exist, then an attempt to read it will return the
empty atom or string: such a result should be treated as failure.

Creating .INI Files

It is not necessary to create .INI files explicitly, since Windows will automatically
create one the first time you want to write to one. Thus the call:

?- profile(temp,foo,bar,sux). <enter>

will create a new file called "temp" (if one is not already there) in the Windows
home directory, with the following contents:



WIN-PROLOG 4.2 - Win32 Programming Guide 179

[foo]
bar=sux

Note that the ".INI" extension is not automatically put on the file name, and also
that the default location for a new initialisation file is in the Windows home
directory. In general, you should maintain .INI files in your application's home
directory, and the following WIN-PROLOG program can be used to generate the
appropriate file name:

ini_file_name( Ini ) :-
fname( [], Path, Name, _ ),
cat( [Path,Name,'.INI'], Ini, _ ).

The call to fname/4 with an empty list as its first argument returns the path,
name and extension components of the full name of the .EXE file currently
running. Depending upon your choice of WIN-PROLOG home directory, this
call will return a result such as "'C:\PRO386W\'", "'PRO386W'" and "'.EXE'".
The second line calls cat/3 to join the path and name to the new ".INI" extension,
which would return a value such as "'C:\PRO386W\PRO386W.INI'".

The important thing about the above program is that if you create a stand-alone
application in a home directory called "D:\FOODIR", and rename the WIN-
PROLOG executable to "FOO.EXE", then this program will return the correct
.INI file name, namely "D:\FOODIR\FOO.INI".

Creating and Deleting Sections and Entries

Just as a .INI file is created automatically the first time you try to write to it, so
new sections and entries are added the first time you write them: in fact, you saw
this with the "profile(temp,foo,bar,sux)" example above. When you want to
change an entry, simply specify the section and entry name, together with its
new value. The following call:

?- profile(temp,foo,bar,you). <enter>

would replace the existing "bar" entry from the "foo" section in "temp", leaving
the file as follows:

[foo]
bar=you

You can remove an entry simply by giving an empty atom or string as the new
value. Thus the call:

?- profile(temp,foo,bar,''). <enter>

would remove the "bar" entry from the "foo" section, leaving just the following:



WIN-PROLOG 4.2 - Win32 Programming Guide180

[foo]

Similarly, you can remove a section simply by giving empty atoms or strings for
both the entry and value fields:

?- profile(temp,foo,'',''). <enter>

would remove the "foo" section, and all entries it contained, from the file "temp".

Should you wish to delete the .INI file itself, simply use the del/1 predicate, but
remember that you will need to specify the full pathname of the file. Depending
upon the name and whereabouts of Windows' home directory, a call such as the
following will remove the file:

?- del('c:\windows\temp'). <enter>

Shared .INI File Etiquette

As discussed above, it is generally recommended that applications store their
persistent data in their own, private .INI files; however, under some circumstances,
it may be desirable to place such information centrally. Normally, applications
are free to add to the WIN.INI file, but they must be careful not to overwrite or
otherwise modify sections belonging to other applications or to Windows itself.
The best solution, apart, that is, from using private .INI files, is to reserve a
section in WIN.INI by using the application name. For example, an application
called "FooDraw 2.0" might keep all of its central persistent data in a section
called, simply, "[FooDraw 2.0]". To add a new item to this section (and create
the section itself if not already there), you might use a call such as:

?- profile('win.ini','FooDraw 2.0',linewidth,'16'). <enter>

This would add the following  section and heading to WIN.INI:

[FooDraw 2.0]
linewidth=16

If you look at your system's WIN.INI, you will see several such entries belonging
to programs such as Netscape, Adobe PageMaker and CorelDRAW!, depending
upon which applications you use.

Note that Windows places an upper limit of around 64 kilobytes on the size of
.INI files, and this is another reason to use private, rather than shared, .INI files
in your applications whenever possible.



WIN-PROLOG 4.2 - Win32 Programming Guide 181

Appendix G - The Win32 API Predicates

This appendix discusses the use of a very powerful pair of predicates, including
winapi/4 and wintxt/4, which between them enable virtually any function in the
Win32 API function or in any 32-bit DLL to be called directly from WIN-PROLOG.

The Win32 Application Programming Interface (API)

Version 4.1 of WIN-PROLOG introduced full support for Unicode, and one
result of this is that the old winapi/3 and wintxt/3 predicates were replaced by
winapi/4 and wintxt/4 respectively. The new predicates differ from their
forbears principally in the presence of a new third argument, which is an integer
flag defining which of several character encodings to use when passing literal
text parameters. From this version onwards, all strings and atoms are comprised
of 32-bit characters, rather than of 8-bit bytes as previously; characters which
fall within the Unicode range are assumed to map to their Unicode meanings,
so that (for example) character code 2122h (8482 decimal) represents the
"Trade Mark" symbol (™).

In order to pass the "™" character to a Windows ANSI function (generally one
with an "A" suffix - see below), this character must be converted to its 8-bit ANSI
equivalent, 99h (153 decimal): setting the third argument of  either winapi/4 and
wintxt/4 to one ("1") will perform this conversion automatically as needed. In
order to pass "™" to a Windows WIDE function (generally one with a "W" suffix
- see below), this character must be not be converted, but rather passed as a 16-
bit Unicode value: setting the third argument of  either winapi/4 and wintxt/4 to
two ("2") will do this. See Appendix L in the Technical Reference for a more
detailed discussion of Character Encodings.

Specifying the Module and Function

 The module and function are combined into a single comma pair, and the second
output value (the old fifth argument) is lost. The following call creates the same
message box as the above example:

?- winapi( (user32,'MessageBoxA'), [0,`world`,`hello`,0)], 1, R ).
<enter>

Note that function names (but not module names) are case sensitive, and that
in this particular example, the function name terminates in "A": this suffix exists
for all ANSI text functions. Windows NT additionally supports WIDE text
functions, in which case the final "A" is replaced by a "W":

?- winapi( (user32,'MessageBoxW'), [0,`world`,`hello`,0)], 2, R ).
<enter>



WIN-PROLOG 4.2 - Win32 Programming Guide182

Optimising the Function Lookup

Each time winapi/4 is called, both the module name and the function within it
have to be searched for by the Win32 API. You can bypass this lookup by supplying
the desired procedure address already dereferenced. The call:

?- winapi( (kernel32,'GetModuleHandleA'), [`user32`], 1, M ),
winapi( (kernel32,'GetProcAddress'), [M,`MessageBoxA`], 1, A),
winapi( A, [0,`world`,`hello`,0)], 1, R ). <enter>

will display the same message box as the previous example. By storing the
address ("A"), and using this next time a message box is required, the lookup time
for "(user32,'MessageBoxA')" can be removed.

Data Buffers

Version 4.0 of WIN-PROLOG introduced a new type of I/O object, the memory
file (previous Win32 releases had simple buffers). These can be created, deleted,
indexed, and generally manipulated exactly like disk files, windows and other
similar objects. From version 4.1 of WIN-PROLOG onwards, these memory can
be created in any of eleven different character encodings. The call:

?- fcreate( fred, [], -2, 0, 1000000 ). <enter>

uses the fcreate/5 predicate to create a zero-initialised memory file, known as
"fred", of at least 1,000,000 bytes size, in "ISO" encoding (the 8-bit ISO/IEC
8859-1 encoding, which maps onto the first 256 characters of Unicode). A
memory file has been created, rather than a disk file, because the file name
argument has been set to an empty list ([]), rather than an atom specifying a valid
file name. You can find out about any memory file with the fdata/5 predicate,
for example in the call:

?- fdata( fred, Address, Mode, Encoding, Size ). <enter>

which will return:

Address = (123,456)
Mode = 2
Encoding = 0
Size = 1000000

The address comprises two integers in a comma pair: the second can generally
be ignored (it contains the data segment selector); the first, which is the offset
address of the file's buffer, might be of interest to some functions. More to the
point, you can use this argument simply to confirm that the given file ("fred" in
this case) is a memory file, rather than a disk file: with the latter, this predicate
returns the file name, rather than an (offset,segment) address.



WIN-PROLOG 4.2 - Win32 Programming Guide 183

The mode argument simply specifies the read/write mode of the memory file,
when used with normal file I/O operations. It has no bearing on its use with the
wintxt/4 predicate (see below). Finally, the size returned will always be at least as
big as the amount you specified in the call to fcreate/5, though Windows may
add extra padding for its own purposes. As well as using a memory file with all
the normal input/output predicates, you can store text in it directly with a call
to the wintxt/4 predicate such as:

?- wintxt( fred, 0, 1, ̀ The quick brown fox` ). <enter>

The value "0" indicates that the string is to be treated as "null-terminated" text,
and the "1" specifies that any Unicode characters in the string should first be
converted to their local ANSI equivalents: this is the default data type used by
Windows "A" (ANSI) text functions. Note that the earlier winapi/3 and wintxt/
3 predicate replaced any NULL (zero) characters in the given string with spaces:
neither of the new predicates, winapi/4 and wintxt/4, do this: instead, strings are
passed literally. The call:

?- wintxt( fred, 0, 1, Text ). <enter>

will return:

Text = `The quick brown fox`

You can also specify a character count, in which case the string will be treated
as binary data, with no substitution of null bytes with spaces. You could create
a structure containing a Win32 "RECT" (rectangle) object with a call such as:

?- read( Rect ),
Rect = [Left,Top,Right,Bottom],
( putx( 4, Left ),

putx( 4, Top ),
putx( 4, Right ),
putx( 4, Bottom )

)  ~> String,
wintxt( fred, 16, 0, String ). <enter>

Here, because an explict count is given (16), the data is passed as binary. If no
count is specified, any null bytes in the data are replaced with spaces, invalidating
the information. Binary data can be read back just as easily:

?- wintxt( fred, 16, 0, String ),
( getx( 4, Left ),

getx( 4, Top ),
getx( 4, Right ),
getx( 4, Bottom )

)  <~ String,



WIN-PROLOG 4.2 - Win32 Programming Guide184

Rect = [Left,Top,Right,Bottom],
write( Rect ). <enter>

When storing in a buffer, if the given count is less than the length of the specified
string, only <count> characters are copied. If the count is greater than the length
of the string, the extra bytes are initialised to NULL (zero) values. The call:

?- wintxt( fred, 1024, 0, ̀ ` ). <enter>

is a quick way of setting the first 1024 bytes of buffer "fred" to zero, which can
be handy when initialising data structures. A list of currently open files can be
picked up with the fdict/1 predicate:

?- fdict( Files ). <enter>

which would return a list, such as:

Files = [fred]

You can check whether any given file is a real disk file, or a memory file, by
checking whether the "filename" returned by fdata/5 is an atom or "(offset/
segment)" comma pair (disk file name or memory file address respectively).
When finished with, memory files can be deleted with the fclose/1 predicate:

?- fclose( fred ). <enter>

Using Memory Files with Win32 API

Memory files are all very well in their own right, but are far more useful in
conjunction with the winapi/4 predicate. The "MessageBox" example above
shows two data types being passed to Windows (integers and strings). The third
type which can be passed is an atom which is the name of a memory file:

?- fcreate( message, [], -2, 0, 1024 ),
wintxt( message, 0, 1, ̀ world` ),
winapi( (user32,'MessageBoxA'), [0,message,`hello`,0)], 0, R ),
fclose( message ). <enter>

creates a 1024-byte memory file called "message", stores text in it using Unicode
to ANSI text conversion, and then passes the buffer name to winapi/4 before
closing the buffer to restore the memory. The winapi/4 predicate simply pushes
the buffer address onto the stack for use by the Win32 API.

Although some Win32 functions return integers, and others return text pointers,
there is no type cast on the function name in winapi/4. Instead, all calls return
a 32-bit integer to Prolog. If your application knows that this integer is in fact
a text pointer, it is simply a matter of calling wintxt/4 to retrieve that text:



WIN-PROLOG 4.2 - Win32 Programming Guide 185

?- winapi( (kernel32,lstrcat), [`abc`,`def`], 1, R ), wintxt( R, 0, 1, T ).
<enter>

would return:

R = 2468091
T = ̀ abcdef`

The value of "R" is not important, but is the address of the string resulting from
the call to "lstrcat": the wintxt/4 predicate "trusts" you to give it a valid address
as its first argument, which may be an atom (a memory file name) or an integer
(a memory address).

Named Memory Addresses

If a winapi/4 function call returns an address, as above, and you want to keep a
reference to this address, you can call fcreate/5 to define it as a memory file.
Simply pass the known address in as the "file name", rather than an empty list.
For example, this call obtains a pointer to the Windows "environment variables",
and then creates a memory file to address these:

?- winapi( (kernel32,'GetEnvironmentStringsA'), [], R ),
fcreate( env, [], 0, 0, 1024 ). <enter>

Here, the (slightly dangerous) assumption is made that the returned address points
to a memory area with a length of 1024 characters. A mode of "0", rather than
"-2", has been used to declare this memory "read only" for file input/output, and
to prevent this memory from being initialised to zero. A call:

?- wintxt( env, 0, 0, First ). <enter>

will return "First" bound to the first environment variable, for example:

First = `COMPSPEC=C:\COMMAND.COM`

Because "env" has been declared as a read-only memory file, it can be used with
input/1 and other file input predicates: although not particularly useful in this case,
there are many applications for this powerful feature.

Indexed Memory File Addressing

As well as accepting memory file names (atoms) and addresses (integers), both
winapi/4 and  wintxt/4 accept a comma pair of a memory file name or address
and an offset into the buffer. The call:

?- fcreate( fred, [], -2, 0, 1024 ),
wintxt( fred, 0, 1, ̀ The quick brown fox` ),



WIN-PROLOG 4.2 - Win32 Programming Guide186

wintxt( (fred,10), 0, 1, Text ). <enter>

will return:

Text = ̀ brown fox`

Similarly, following this with the call:

?- wintxt( (fred,10), 0, 1, ̀ and the dead` ),
wintxt( fred, 0, 1, Text ). <enter>

will return:

Text = `The quick and the dead`

With named memory files, the size of the buffer is known, and WIN-PROLOG

automatically checks to make sure that you do not write beyond its end. With
integer addresses, however, the size is unknown, and any attempt to write to
such a buffer should be handled with extreme care to avoid corrupting memory
or generating general protection faults (GPFs).

The Internal Buffer

One special, pre-defined buffer exists, and is used by many of the built-in
predicates. Its name is "[]" (the empty list), so it cannot be mistaken for a memory
file. Its size is fixed at 64kb, and it can be used in calls to winapi/4 and wintxt/
4, but unlike the memory files described elsewhere in this appendix, it cannot
be used in conjunction with file input/output. It has one additional property
which is very important: it maintains an end-of-buffer pointer, which is updated
each time the buffer is written to. A special call:

?- wintxt( [], -1, -1, Text ). <enter>

returns the contents of the buffer up to the end marker, in binary mode. This
allows the buffer to be saved and restored around its re-use during a predicate:

foo :-
wintxt( [], -1, -1, Text ), % save current value of buffer
wintxt( [], 0, `World` ), % store new data in buffer
... % use the data and buffer as required
wintxt( [], -1, -1, Text ). % restore original value of buffer

This model ensures that if the predicate which calls "foo/0" itself uses the
internal buffer, the contents will not be corrupted during the call.

The winapi/4 predicate also uses the internal buffer for its on-the-fly allocation
of text space, but always begins using the buffer from the first "free" byte after



WIN-PROLOG 4.2 - Win32 Programming Guide 187

the end marker. If the internal buffer is full, for example after the call:

?- wintxt( [], 65535, 0, ̀ ` ). <enter>

then the winapi/4 predicate will be unable to handle in-line text items (strings).
It is generally a good idea to set the internal buffer to empty before calling winapi/
4 in such a way:

bar :-
wintxt( [], -1, -1, Text ), % save current value of buffer
wintxt( [], -1, -1, ̀ ` ), % empty the buffer
winapi( (user32,'MessageBoxA'), [0,`world`,`hello`,0)], Button ),
wintxt( [], -1, -1, Text ). % restore value of buffer

Note that the above precaution is necessary only if an application is likely to be
using most of the internal buffer at the point it calls your routine. Currently, none
of the Prolog-implemented Windows predicates directly use more than about
half of the internal buffer, so there is always a reasonable amount free for winapi/
4 text parameters. If greater amounts of text are anticipated, it would be a good
idea to place the text in named buffers declared specially for the purpose.

The special end-of-buffer pointer is maintainted only for the internal buffer ("[]"),
and not for named buffers. With the latter, the same care should be taken with
updating their contents as would be with any global assignable data object (such
as a file or dynamic predicate).

Examples

This section presents some examples to illustrate various uses of winapi/4. The
first of these uses the "GetWindowText" function to retrieve the title of the main
window using the internal buffer "[]" as storage:

?- wndhdl( 0, Handle ),
winapi( (user32,'GetWindowTextA'), [Handle,[],256], 1, Count ),
wintxt( [], 0, 1, Text ). <enter>

With this call, the following data are returned:

Handle = 5828
Count = 22
Text = `WIN-PROLOG - [Console]`

Note that this example does not preserve the contents of the internal buffer (see
above). The next example calls the "GetWindowRect" function to return the size
of a window, again using the internal buffer ("[]") for storage:

?- wndhdl( 0, Handle ),



WIN-PROLOG 4.2 - Win32 Programming Guide188

winapi( (user32,'GetWindowRect'), [Handle,[]], 0, _ ),
wintxt( [], 16, 0, Data ),
( getx( 4, Left ),

getx( 4, Top ),
getx( 4, Right ),
getx( 4, Bottom )

)  <~ Data.

This call would return:

Handle = 5828
Data = `~@~@~@~@~@~@~@~@|~B~@~@˜~A~@~@`
Left = 0
Top = 0
Right = 636
Bottom = 408

Once again, note that this example does not preserve the contents of the
internal buffer.

The winapi/4 and wintxt/4 Predicates

In this final section, we look in slightly more detail at the Win32 API and text
predicates. Both make use of  "buffer address" in their arguments, and for the
sake of brevity, this will be known as the "buf" data type. Possible instances of
this are listed in Table G.1:

Table G.1 - Buffer Address Data Types

Name/Type Description

atom named buffer
[] internal buffer
integer address buffer
(atom,integer) indexed entry in named buffer
([],integer) indexed entry in internal buffer
(integer,integer) indexed entry in address buffer

The winapi/4 predicate takes four arguments, respectively these comprise the
module/function name, a list of parameters, the character encoding flag and the
return value. The function may be specified by a conjunction of two atoms, the
first being the module name (not case sensitive) and the second the function
name (case sensitive and character set dependent), or it may be the address of
a function that has been computed elsewhere, as shown previously. The list of
parameters can consist of any mix of the data items show in Table G.2:



WIN-PROLOG 4.2 - Win32 Programming Guide 189

Table G.2 - Win32 API Argument Types

Type Description

integer 32-bit integer parameter
string 32-bit pointer to null-terminated string
"buf" 32-bit pointer to given buffer
atom 32-bit pointer to named buffer

The character encoding flag specifies in which of four formats to encode the 32-
bit characters of WIN-PROLOG strings in memory, as shown in Table G.3:

Table G.3 - Win32 Character Encodings

Encoding Description

0 8-bit text passed directly in ISO/IEC 8859-1 format
1 16-bit text converted to/from ANSI in memory
2 16-bit text passed directly in Windows WIDE format
3 32-bit text passed directly to custom DLLs

The return code is always a 32-bit integer, and wintxt/4 can be used to convert
returned text pointers to LPA-PROLOG strings or to retrieve data from returned
structures or pointer to structures.

The predicate which passes data to and from memory files is wintxt/4, whose
arguments include a "buf" item, the desired size of transfer, and a variable or
string for reading or writing of the buffer respectively. Where the size is specified
as "0" (zero), it is assumed that the string is to be treated as "null-terminated",
meaning that it will be read up to (but not including) the first null (zero) byte, or
written with embedded null bytes replaced by spaces and appended with a null
byte. This is the format of string used by C/C++ in general and the Win32 API
in particular. For binary data, it is essential to specify the size. With the internal
buffer, a special size of "-1" is used to read or write the exact number of bytes
in the buffer.



WIN-PROLOG 4.2 - Win32 Programming Guide190

Index

Symbols
.INI files 177
<backspace> key 13
<ctrl-break> key 18
<ctrl-enter> key 16
<del> key 18
<enter> key 13
'?CHANGE?'/3 114
'?FIND?'/3 113
'?MESSAGE?'/4 112, 116, 117
~>/2 31
386 assembly language 9

A
about box 41
abtbox/3 41
Adobe 86
ANSI 153, 181
ANSI character set 83
ANSI font 83
ansoem/2 155
ASCII character set 153
ATM 86
Atoms 156
autocheckbox 106
automatic checkbox 63

B
background 140
backgrounds 139
backwards quotes 26
bitmaps 140
Bitstream 86
borders 106
brush styles 141, 143
brushes 139, 141
buffer 157
buffered output 19
busy/1 50, 163, 164
button 63
button controls 135



WIN-PROLOG 4.2 - Win32 Programming Guide 191

C
C/C++ 62
call_dialog/2 115, 122, 129, 130, 131
cat/3 179
change_hook/3 114
char list 156
checkbox 63
checked state 65
Checkmarks 97
chgbox/3 50, 114, 115
child window 63
circular references 94
client area 12, 13, 106
clipping region 150
Clocksin and Mellish 8
Codepage 437 153
combobox controls 76
console window 13, 25, 100
Control Characters 22
control classes 62
control window 100
Controls 27
cursors 142

D
default mapping 149
default origin 149
defpushbutton 106
del/1 180
desktop publishing 83
device context 133, 147
dialog windows 62, 100
dialogs 62
dirbox/4 42
dirty areas 134
DLL 8
DOS-PROLOG 9
Dynamic Link Libraries 8

E
edit control 13, 66
Editing Commands 13
editing of text 25
enable 65
exec/3 167
exit/1 85, 86, 94
external window 102



WIN-PROLOG 4.2 - Win32 Programming Guide192

F
FaceLift 86
fail/0 159, 160
family 83
fclose/1 184
fcreate/4 183
fcreate/5 182, 185
fdata/5 182, 184
fdict/1 184
file handling 178
find_hook/3 113
flag/1 114
fname/4 179
fndbox/2 50, 113, 114
fntbox/3 45
focus 57
font styles 143
fonts 83, 139, 143
fonts/1 86, 88
foregrounds 139, 144
formatted tables 22

G
GDI objects 139
General Protection Fault 84
General Protection Faults 94
get/1 161
getb/1 161
gfx/1 82, 140
gfx_back_close/1 140
gfx_back_create/4 140
gfx_back_dict/1 140
gfx_back_handle/2 140
gfx_begin/1 133, 139, 147, 148, 151, 152
gfx_begin/3 150
gfx_bitmap_close/1 141
gfx_bitmap_dict/1 141
gfx_bitmap_handle/2 141
gfx_bitmap_load/2 141
gfx_brush_close/1 142
gfx_brush_create/5 139, 141
gfx_brush_dict/1 142
gfx_brush_handle/2 142
gfx_cleanup/0 152
gfx_clipping/4 150
gfx_cursor_handle/2 142
gfx_end/1 133, 137, 147, 148, 152



WIN-PROLOG 4.2 - Win32 Programming Guide 193

gfx_end/3 150
gfx_font_close/1 143
gfx_font_create/4 143
gfx_font_dict/1 143
gfx_font_handle/2 143
gfx_fore_close/1 144
gfx_fore_create/4 144
gfx_fore_dict/1 144
gfx_fore_handle/2 144
gfx_icon_close/1 145
gfx_icon_dict/1 145
gfx_icon_handle/2 145
gfx_icon_load/3 145
gfx_mapping/4 149
gfx_metafile_close/1 145
gfx_metafile_dict/1 145
gfx_metafile_handle/2 145
gfx_metafile_load/2 145
gfx_paint/1 133, 134, 137, 139, 147, 148, 150, 152
gfx_pen_create/5 139, 145
gfx_pen_dict/1 146
gfx_pen_handle/2 146
gfx_resolution/4 149
gfx_rop_handle/2 147
gfx_select/1 148, 149
gfx_test/1 150
gfx_window_cursor/2 142, 152
gfx_window_redraw/5 152
gfx_window_scroll/3 152
glass teletype 132
global objects 84, 93
grafix controls 81, 90, 136
Graphical User Interface 8
graphics functions 139
graphics objects 139
graphics output 135
graphics procedure 140
graphics programming 132
graphics windows 111
grey out 97
GUI) 8

H
halt/0 85, 117
halt/1 85, 117
handler 120
hexadecimal 168



WIN-PROLOG 4.2 - Win32 Programming Guide194

hexadecimal notation 63
hide 57
hit testing 150
home directory 179
hourglass cursor 50

I
IBM PC 153
iconise 57
icons 144
initialisation files 177
input/1 185
internal buffer 187
ISO 153, 182
ISO/IEC 8859-1 153, 182
italic 83

L
lexical table 154
listbox controls 70
logical handles 101
LPA-PROLOG 9
LPA-PROLOG for Windows 8

M
mapping 149
maximise 57
MDI 8, 12, 25, 91, 100
memory file 182
memory resources 84, 93
menu bar 91
menus 91, 106, 108
message box 38
Message Hooks 111
message_hook/4 117, 118
messages 108, 137
metafiles 145
modal dialog handler 120
modal dialogs 119
modeless dialogs 119
mouse messages 150
ms/2 49
MSG_BUTTON 110
MSG_CBCHANGE 109
MSG_CBCHGALL 109
MSG_CBCHGFND 109
MSG_CBCLOSE 109



WIN-PROLOG 4.2 - Win32 Programming Guide 195

MSG_CBFIND 109
MSG_CBFNDNXT 109
MSG_CHANGE 110
MSG_CHAR 111, 138
MSG_CLOSE 110
MSG_DOUBLE 110
MSG_DROP 110
MSG_FBCLOSE 109
MSG_FBFIND 109
MSG_FBFNDNXT 109
MSG_FOCUS 110
MSG_FUZZY 110
MSG_HORZ 110
MSG_LEFTDOUBLE 111, 137, 138
MSG_LEFTDOWN 111, 137, 138
MSG_LEFTUP 111, 137, 138
MSG_MENU 110
MSG_MOUSEMOVE 111, 138
MSG_MOVE 110
MSG_PAINT 111, 134, 135, 136, 147, 152
MSG_RIGHTDOUBLE 111, 138
MSG_RIGHTDOWN 111, 138
MSG_RIGHTUP 111, 138
MSG_SELECT 110
MSG_SIZE 110
MSG_SYSMENU 110
MSG_VERT 110
msgbox/4 38, 41, 158
Multi-line Commands 15
Multiple Document Interface 12, 25, 100

N
null-terminated 183, 189

O
OEM font 49, 83
operating system 108
opnbox/5 41
origin 149
Output Buffering 19

P
pen styles 145
pens 139, 145
pixel resolution 149
predefined windows 100
print setup dialog 47



WIN-PROLOG 4.2 - Win32 Programming Guide196

printer 151
prnbox/4 47, 48, 151
prnend/1 151
prnini/4 151
prnpag/1 151
prnstt/1 151
PRO386W.DLL 41, 49
PRO386W.INI 179
profile/4 177, 178
pushbutton 63, 106

Q
Quintus Prolog 8

R
radio buttons 65
raster operations 146
RAW 154
Raw handles 101
read/1 161
repainting graphics 134
repeat/0 49, 159, 160
RGB 140, 141, 144, 145
roman 83
rops 146

S
savbox/5 41, 44
scroll bars 20, 106
scrollbar controls 79
separator 97
show 57
show_dialog/1 130
show_dialog/2 116
Standard Dialogs 38
static controls 77
status box 49
stock backgrounds 140
stock brushes 141
stock cursors 142
stock fonts 143
stock foregrounds 144
stock icons 144
stock metafiles 145
stock pens 145
stock rops 146
Strings 157



WIN-PROLOG 4.2 - Win32 Programming Guide 197

sttbox/2 158
surrogate pairs 154

T
tab stop 63
text data types 156
text heap 157
Text Windows 25
text wrapping 22
thumb 81
tick characters 97
TrueType 86
ttyflush/0 165
type managers 86
typefaces 83
Typing Commands 13

U
unchecked state 65
Unicode 153, 154, 181

W
wait/1 161
warea/5 106
wbtnsel/2 65, 66
wccreate/8 174
wclass/2 107, 175
wclose/1 32, 130
wcount/4 35, 69
wcreate/8 25, 52, 53, 58, 107, 158, 175
wdcreate/7 174
wdict/1 37
wedtfnd/6 36, 69
wedtlin/4 33, 35, 69
wedtpxy/4 34, 69
wedtsel/3 29, 32, 33, 36, 69
wedttxt/2 29, 30, 32, 35, 69
well behaved 159
wenable/2 65
wenable/2, 65
wfclose/1 86, 143
wfcreate/4 143
wfdata/5 89
wfdict/1 90
wfind/3 102, 175
wfocus/1 31, 57, 102, 162, 163, 164
wfsize/4 90



WIN-PROLOG 4.2 - Win32 Programming Guide198

wgfx/2 82, 135
WIDE 181
WIN-PROLOG 179
WIN.INI 177
winapi/3 181, 183
winapi/4 101, 181, 182, 183, 184, 185, 186, 187, 188
window class 107
window classes 176
Window Handlers 113
window handles 100
window styles 104, 168
window_handler/2 115, 116, 125
window_handler/4 113, 116
Windows SDK 40, 62
wintxt/3 181, 183
wintxt/4 181, 183, 184, 185, 186, 189
wlbxadd/3 71
wlbxfnd/4 75
wlbxsel/3 75
wlink/3 103
wmclose/1 94
wmdict/1 99
wmnuadd/4 91, 92, 97
wmnudel/2 92, 97
wmnuget/4 95, 96
wmnunbl/3 98
wmnusel/3 97
wndhdl/2 101
wrange/4 80, 81
wshow/2 57, 162, 164
wsize/5 59, 61, 65, 106
wstyle/2 104, 106
wtcreate/6 174
wtext/2 58, 59, 61, 65, 69, 77, 78, 129, 158
wthumb/3 81
wucreate/6 174

Y
yielding control 159


	Table of Contents
	WIN-PROLOG Win32 Programming Guide 
	Introduction 
	What's in WIN-PROLOG? 
	About this manual 
	Chapter 1 - WIN-PROLOG 
	WIN-PROLOG and DOS-PROLOG 
	The Anatomy of LPA-PROLOG 
	Differences between WIN-PROLOG and DOS-PROLOG 
	Some Minor Limitations in Windows 
	What's in this Manual 
	Chapter 2 - The Console Window 
	The Main and Console Windows 
	Typing Commands 
	Editing Commands 
	Re-entering Commands 
	Multi-line Commands 
	Breaking In 
	Clearing the Console Window 
	Output to the Console Window 
	Output Buffering 
	Two-way Scrolling 
	Control Characters 
	Discriminating between Input and Output 
	Chapter 3 - Text Windows 
	Text Windows 
	Modeless MDI Windows 
	Creating a Text Window 
	Entering Text 
	Windows and Controls 
	Entering Further Commands 
	Reading from a Text window 
	Writing to a Text window 
	Copying Text between Windows 
	Closing a Text window 
	Rows, Columns and Offsets 
	Finding a Line 
	Counting Characters, Words and Lines 
	Finding Text 
	The Window Dictionary 
	Chapter 4 - Standard Dialogs 
	Simple Modal Dialogs 
	The Message Box 
	Message Box Styles 
	The About Box 
	The Open and Save Boxes 
	The Font Box 
	The Print and Print Setup Boxes 
	The Status Box 
	The Busy (Hourglass) Cursor 
	Find and Change Boxes 
	Chapter 5 - User Windows and Dialogs 
	User and Dialog Windows 
	Creating a User Window 
	Lack of Control 
	Creating a Dialog Window 
	Differences between User and Dialog Windows 
	Creating Invisible Dialogs 
	Manipulating Dialogs 
	Changing Window Titles 
	Resizing Windows 
	Chapter 6 - Control Windows 
	Control Windows 
	Control Classes 
	The Button Class 
	Programming Button Controls 
	The Edit Class 
	Programming Edit Controls 
	The Listbox Class 
	Programming Listbox Controls 
	The Combobox Class 
	Programming Combobox Controls 
	The Static Class 
	Programming Static Controls 
	The Scrollbar Class 
	The Grafix Class 
	Chapter 7 - Typefaces and Fonts 
	Typefaces versus Fonts 
	Predefined Fonts 
	Creating and Using a Font 
	Care in Font Handling 
	Closing a Font 
	Enumerating Typefaces 
	Checking Font Data 
	The Font Dictionary 
	Graphics Programming 
	Chapter 8 - Menus 
	Predefined Menus 
	Creating a Menu 
	Adding Items to a Menu 
	Removing Items from a Menu 
	Care in Menu Handling 
	Closing a Menu 
	Checking Menu Entries 
	Separators, Checkmarks and Grey Menu Items 
	The Menu Dictionary 
	Chapter 9 - General Window Handling 
	Window Handles 
	External Windows 
	Logical and Raw Handles 
	Finding an External Window Handle 
	Window Styles 
	Window Size and Area 
	Window Classes 
	Chapter 10 - Windows Messages 
	Windows and Messages 
	Prolog and Messages 
	Anatomy of a Message 
	Predefined Modeless Dialog Messages 
	Window Menu and State Messages 
	Predefined and User Menu Messages 
	Graphics Messages 
	Message Hooks and Subclassing 
	Message Preprocessing 
	Window Handlers 
	'?FIND?'/3: The Find Box Hook 
	'?CHANGE?'/3: The Change Box Hook 
	Modal Dialog Message Handlers 
	Modeless Dialog Message Handlers 
	Generic Window Handlers 
	'?MESSAGE?'/4: The Message Hook 
	Chapter 11 - Creating and Using Dialogs 
	Dialog and Control Windows 
	Building a Dialog 
	Writing a Modal Dialog Handler 
	Calling the Modal Dialog 
	Writing a Modeless Dialog Handler 
	Calling the Modeless Dialog 
	Responses and Actions 
	Freeing Memory Resources 
	Chapter 12 - Graphics 
	Fundamental Considerations 
	Windows and Device Contexts 
	Repainting Graphics 
	Graphics, "Button" and "Grafix" Windows 
	Messages and Graphics 
	MSG_PAINT - Window needs painting 
	MSG_LEFTDOWN - Left mouse button pressed 
	MSG_LEFTDOUBLE - Left mouse button double clicked 
	MSG_LEFTUP - Left mouse button released 
	MSG_RIGHTDOWN - Right mouse button pressed 
	MSG_RIGHTDOUBLE - Right mouse button double clicked 
	MSG_RIGHTUP - Right mouse button released 
	MSG_MOUSEMOVE - Mouse moved to new position 
	MSG_CHAR - Character returned from keyboard 
	Graphics Components: Objects and Functions 
	GraFiX Objects: Backgrounds 
	GraFiX Objects: Bitmaps 
	GraFiX Objects: Brushes 
	GraFiX Objects: Cursors 
	GraFiX Objects: Fonts 
	GraFiX Objects: Foregrounds 
	GraFiX Objects: Icons 
	GraFiX Objects: Metafiles 
	GraFiX Objects: Pens 
	GraFiX Objects: Raster Operations 
	GraFiX: Setting the Device Context 
	GraFiX: Changing Device Context Object Selections 
	GraFiX: Changing Device Context Mapping and Origin 
	GraFiX: Mouse Interaction 
	GraFiX: Printer Control 
	GraFiX: Window Control 
	GraFiX: Device Contexts and Error Handling 
	Appendix A - Character Sets and Fonts 
	ASCII, ANSI and the IBM PC Legacy 
	The 32-bit Character Set, Unicode and ISO/IEC 8859-1 
	The Lexical Table 
	Old Source Files and the Codepage 437 Character Set 
	New Source Files, ISO/IEC 8859-1 and Unicode 
	Sorting and Term Comparison 
	Appendix B - Text Data Types 
	The Atom 
	The Char list 
	The String 
	Uses of Strings and Atoms in Windows 
	Character Encoding in Strings and Atoms 
	Optional and Compulsory Atoms and Strings 
	Appendix C - Programming Considerations 
	Multitasking and Good Behaviour 
	Relinquishing Control 
	Optimised Tail Recursion 
	Explicit Yielding of Control 
	File Management 
	The Keyboard and Focus 
	The Mouse and the Cursor 
	Buffered Console Output 
	Executing External Applications 
	Appendix D - Window Styles 
	Window Styles: 32-bit Integers 
	Hexadecimal Notation 
	Generic Window Styles 
	Button Control Styles 
	Edit Control Styles 
	Listbox Control Styles 
	Combobox Control Styles 
	Scrollbar Control Styles 
	Static Control Styles 
	Grafix Control Styles 
	Dialog Pseudostyles 
	Symbolic to Integer Conversion 
	Appendix E - Window Classes 
	Window Classes and Pseudoclasses 
	User Window Classes and Pseudoclasses 
	Predefined Window and Pseudoclass Classes 
	Appendix F - Initialisation Files 
	Persistent Data: the .INI File 
	Files, Sections and Entries 
	Reading and Writing Data in .INI files 
	Creating .INI Files 
	Creating and Deleting Sections and Entries 
	Shared .INI File Etiquette 
	Appendix G - The Win32 API Predicates 
	The Win32 Application Programming Interface (API) 
	Specifying the Module and Function 
	Optimising the Function Lookup 
	Data Buffers 
	Using Memory Files with Win32 API 
	Named Memory Addresses 
	Indexed Memory File Addressing 
	The Internal Buffer 
	Examples 
	The winapi/4 and wintxt/4 Predicates 
	Index 


