
Google Maps API Documentation

Google Maps API

Google Maps API Version 2 Documentation

The Google Maps JavaScript API lets you embed Google Maps in your own web pages. To use the API, you need to sign up for an API
key, and then follow the instructions below.

The API is new, so there may be bugs and slightly less than perfect documentation. Bear with us as we fill in the holes, and join the Maps
API discussion group to give feedback and discuss the API.

This documentation refers to Version 2 of the Maps API, launched on April 3, 2006. If your API uses Version 1 of the Maps API (i.e., you
developed your site before April 3, 2006), you should attempt to upgrade your web site. Please see:

● Version 2 Upgrade Guide

● Google Maps API Version 1 Documentation

Table of Contents

Audience

Introduction
The Hello
World of
Google Maps
Browser
Compatibility
XHTML and
VML
API Updates
Geocoding
Routing and
Local Search
Marker
Manager New!

Maps Examples
The Basics
Map
Movement
and

Geocoder
Examples

Geocoding
using
JavaScript
Extracting
Structured
Address
Information
Caching
Geocodes
HTTP Request

Marker
Manager
Examples New!

A Weather
Map
Google offices

Troubleshooting
Other

Audience

This documentation is designed for people familiar with JavaScript programming and object-oriented
programming concepts. You should also be familiar with Google Maps from a user's point of view.
There are many JavaScript tutorials available on the Web

Introduction

The "Hello, World" of Google Maps

The easiest way to start learning about this API is to see a simple example. The following web page
displays a 500x300 map centered on Palo Alto, California:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="content-type" content="text/html; charset=utf-8"/
>
 <title>Google Maps JavaScript API Example</title>
 <script src="http://maps.google.com/maps?file=api&v=2&

Google Maps API

Sign up for an API key

API Documentation

API Help

API Terms of Use

API Blog

API Discussion Group

Google Maps
for Enterprise
Includes enterprise
licensing and support

http://www.google.com/apis/maps/documentation/ (1 of 30)16-01-2007 20:09:02

http://maps.google.com/maps
http://www.google.com/apis/maps/signup.html
http://www.google.com/apis/maps/signup.html
http://groups-beta.google.com/group/Google-Maps-API
http://groups-beta.google.com/group/Google-Maps-API
http://www.google.com/apis/maps/documentation/upgrade.html
http://www.google.com/apis/maps/documentation/v1/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://maps.google.com/maps
http://www.google.com/search?q=javascript+tutorials
http://maps.google.com/maps
http://www.google.com/apis/maps/
http://www.google.com/apis/maps/signup.html
http://www.google.com/apis/maps/faq.html
http://www.google.com/apis/maps/terms.html
http://googlemapsapi.blogspot.com/
http://groups-beta.google.com/group/Google-Maps-API
http://www.google.com/enterprise/maps
http://www.google.com/enterprise/maps

Google Maps API Documentation

Animation
Adding
Controls to
the Map
Event
Listeners
Opening an
Info Window
Map Overlays
Click
Handling
Display Info
Windows
Above
Markers
Tabbed Info
Windows
Creating
Icons
Using Icon
Classes
Draggable
Markers
Encoded
Polylines New!

Using XML
and
Asynchronous
RPC
("AJAX") with
Maps
Custom Map
Controls
Custom
Overlays

resources

API Overview
The GMap2
class
Events
The Info
Window
Overlays
Controls
XML and RPC
Reducing
Browser
Memory Leaks

Class Reference

key=abcdefg"
 type="text/javascript"></script>
 <script type="text/javascript">
 //<![CDATA[

 function load() {
 if (GBrowserIsCompatible()) {
 var map = new GMap2(document.getElementById("map"));
 map.setCenter(new GLatLng(37.4419, -122.1419), 13);
 }
 }

 //]]>
 </script>
 </head>
 <body onload="load()" onunload="GUnload()">
 <div id="map" style="width: 500px; height: 300px"></div>
 </body>
</html>

You can download this example to edit and play around with it, but you'll have to replace the key in that file with your own
Maps API key. (If you register a key for a particular directory, it works for all subdirectories as well.)

The URL in the example above (http://maps.google.com/maps?file=api&v=2) is the location of a JavaScript file
that includes all of the symbols you need for placing Google Maps on your pages. Your page must contain a script tag
pointing to that URL, using the key you got when you signed up for the API. If your Maps API key were "abcdefg", then
your script tag might look like this:

<script src="http://maps.google.com/maps?file=api&v=2&key=abcdefg"
 type="text/javascript">
</script>

The class that represents a map is GMap2. This class represents a single map on the page. You can create as many
instances of this class as you want (one for each map on the page). When you create a new map instance, you specify a
named element in the page (usually a div element) to contain the map. Unless you specify a size explicitly for the map,

the map uses the size of the container to determine its size.

Browser Compatibility

The Google Maps API supports the same browsers as the Google Maps site. Since different applications require different behaviors for
users with incompatible browsers, the Maps API provides a global method (GBrowserIsCompatible()) to check compatibility, but it
does not have any automatic behavior when it detects an incompatible browser. The script http://maps.google.com/maps?
file=api&v=2 can be parsed in almost every browser without errors, so you can safely include that script before checking for

http://www.google.com/apis/maps/documentation/ (2 of 30)16-01-2007 20:09:02

http://www.google.com/apis/maps/documentation/reference.html
http://www.google.com/apis/maps/documentation/simple.html
http://www.google.com/apis/maps/signup.html
http://local.google.com/support/bin/answer.py?answer=16532&topic=1499

Google Maps API Documentation

compatibility.

None of the examples in this document check for compatibility (other than the first example, above), nor do they display an error message
for older browsers. Clearly real applications should do something more friendly with incompatible browsers, but we have omitted such
checks to make the examples more readable.

Non-trivial applications will inevitably encounter inconsistencies between browsers and platforms. There is no simple solution to these
problems, but the Google Maps API discussion group and quirksmode.org are both good resources to find workarounds.

XHTML and VML

We recommend that you use standards-compliant XHTML on pages that contain maps. When browsers see the XHTML DOCTYPE at the
top of the page, they render the page in "standards compliance mode," which makes layout and behaviors much more predictable across
browsers.

If you want to show polylines on your map (like the lines used by Google Maps to show driving directions), you need to include the VML
namespace and some CSS code in your XHTML document to make everything work properly in IE. The beginning of your XHTML
document should look something like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:v="urn:schemas-microsoft-com:vml">
 <head>
 <meta http-equiv="content-type" content="text/html; charset=UTF-8"/>
 <title>My Google Maps Hack</title>
 <style type="text/css">
 v\:* {
 behavior:url(#default#VML);
 }
 </style>
 <script src="http://maps.google.com/maps?file=api&v=2&key=abcdefg"
 type="text/javascript"></script>
 </head>

API Updates

The v=2 part of the URL http://maps.google.com/maps?file=api&v=2 refers to "Version 2 " of the API. When we do a significant
update to the API in the future, we will change the version number and post a notice on Google Code and the Maps API discussion group.

After a new version is released, we will try to run the old and new versions concurrently for about a month. After a month, the old version
will be turned off, and code that uses the old version will no longer work.

The Maps team transparently updates the API with the most recent bug fixes and performance enhancements. These bug fixes should
only improve performance and fix bugs, but we may inadvertently break some API clients. Please use the Maps API discussion group to

http://www.google.com/apis/maps/documentation/ (3 of 30)16-01-2007 20:09:02

http://groups.google.com/group/Google-Maps-API
http://www.quirksmode.org/
http://code.google.com/
http://groups-beta.google.com/group/Google-Maps-API
http://groups-beta.google.com/group/Google-Maps-API

Google Maps API Documentation

report such issues.

Geocoding

Geocoding is the process of converting addresses (like "1600 Amphitheatre Parkway, Mountain View, CA") into geographic coodinates
(like latitude 37.423021 and longitude -122.083739), which you can use to place markers or position the map based on street addresses in
your database or addresses supplied by users. The Google Maps API includes a geocoder that can be accessed via HTTP request or
directly from within the JavaScript.

Routing and Local Search

The Google Maps API does not include routing services at this time. However, there are a number of free routing APIs on the web. If you
would like to add local search capabilities to your site, you can use the Google AJAX Search API to embed a local search module into your
site.

Marker Manager

Adding a large number of markers to a Google map may both slow down rendering of the map and introduce too much visual clutter,
especially at certain zoom levels. The marker manager utility provides a solution to both of these issues, allowing efficient display of
hundreds of markers on the same map and the ability to specify at which zoom levels markers should appear.

The marker manager offloads management of markers registered with the utility, keeping track of which markers are visible at certain zoom
levels within the current view, and passing only these markers to the map for drawing purposes. The manager monitors the map's current
viewport and zoom level, dynamically adding or removing markers from the map as they become active. In addition, by allowing markers to
specify the zoom levels at which they display themselves, developers can implement marker clustering. Such management can greatly
speed up map rendering and reduce visual clutter.

Examples

Each of the following examples shows only the relevant JavaScript code, not the full HTML file. You can plug the JS code into the skeleton
HTML file shown earlier, or you can download the full HTML file for each example by clicking the link after the example.

The Basics

The following example creates a map and centers it on Palo Alto, California.

var map = new GMap2(document.getElementById("map"));
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

View example (simple.html)

http://www.google.com/apis/maps/documentation/ (4 of 30)16-01-2007 20:09:02

http://www.google.com/search?q=free+routing+api
http://code.google.com/apis/ajaxsearch/
http://www.google.com/uds/samples/places.html
http://www.google.com/apis/maps/documentation/simple.html

Google Maps API Documentation

Map Movement and Animation

The following example displays a map, waits two seconds, and then pans to a new center point.

The panTo method centers the map at a given point. If the specified point is in the visible part of the map, then the map pans smoothly to
the point; if not, the map jumps to the point.

var map = new GMap2(document.getElementById("map"));
map.setCenter(new GLatLng(37.4419, -122.1419), 13);
window.setTimeout(function() {
 map.panTo(new GLatLng(37.4569, -122.1569));
}, 1000);

View example (animate.html)

Adding Controls to the Map

You can add controls to the map with the addControl method. In this case, we add the built-in GSmallMapControl and
GMapTypeControl controls, which let us pan/zoom the map and switch between Map and Satellite modes, respectively.

var map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

View example (controls.html)

Event Listeners

To register an event listener, call the GEvent.addListener method. Pass it a map, an event to listen for, and a function to call when the
specified event occurs. In the following example code, we display the latitude and longitude of the center of the map after the user drags
the map.

var map = new GMap2(document.getElementById("map"));
GEvent.addListener(map, "moveend", function() {
 var center = map.getCenter();
 document.getElementById("message").innerHTML = center.toString();
});
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

http://www.google.com/apis/maps/documentation/ (5 of 30)16-01-2007 20:09:02

http://www.google.com/apis/maps/documentation/animate.html
http://www.google.com/apis/maps/documentation/controls.html

Google Maps API Documentation

View example (event.html)

For more information about events, see the Events Overview. For a complete list of GMap2 events and the arguments they generate, see
GMap2.Events.

Opening an Info Window

To create an info window, call the openInfoWindow method, passing it a location and a DOM element to display. The following example
code displays an info window anchored to the center of the map with a simple "Hello, world" message.

var map = new GMap2(document.getElementById("map"));
map.setCenter(new GLatLng(37.4419, -122.1419), 13);
map.openInfoWindow(map.getCenter(),
 document.createTextNode("Hello, world"));

View example (infowindow.html)

Map Overlays

This example displays 10 markers at random locations on the map and a polyline with 5 random points. GMarker use the default Google
Maps icon if no other icon is given. See Creating Icons for an example using custom icons.

Remember that you must include the VML namespace and CSS in your HTML document to view polylines in IE. See XHTML and VML for
more information.

var map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

// Add 10 markers in random locations on the map
var bounds = map.getBounds();
var southWest = bounds.getSouthWest();
var northEast = bounds.getNorthEast();
var lngSpan = northEast.lng() - southWest.lng();
var latSpan = northEast.lat() - southWest.lat();
for (var i = 0; i < 10; i++) {
 var point = new GLatLng(southWest.lat() + latSpan * Math.random(),
 southWest.lng() + lngSpan * Math.random());
 map.addOverlay(new GMarker(point));

http://www.google.com/apis/maps/documentation/ (6 of 30)16-01-2007 20:09:02

http://www.google.com/apis/maps/documentation/event.html
http://www.google.com/apis/maps/documentation/reference.html#Events_GMap
http://www.google.com/apis/maps/documentation/infowindow.html

Google Maps API Documentation

}

// Add a polyline with five random points. Sort the points by
// longitude so that the line does not intersect itself.
var points = [];
for (var i = 0; i < 5; i++) {
 points.push(new GLatLng(southWest.lat() + latSpan * Math.random(),
 southWest.lng() + lngSpan * Math.random()));
}
points.sort(function(p1, p2) {
 return p1.lng() - p2.lng();
});
map.addOverlay(new GPolyline(points));

View example (overlay.html)

Click Handling

To trigger an action when a user clicks the map, register a listener for the "click" event on your GMap2 instance. When the event is
triggered, the event handler will receive two arguments: the marker that was clicked (if any), and the GLatLng of the clicked point. If no
marker was clicked, the first argument will be null.

Note: Markers are the only built-in overlay that supports the "click" event. Other types of overlays, like GPolyline, are not clickable.

In the following example, when the visitor clicks a point on the map without a marker, we create a new marker at that point. When the
visitor clicks a marker, we remove it from the map.

var map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

GEvent.addListener(map, "click", function(marker, point) {
 if (marker) {
 map.removeOverlay(marker);
 } else {
 map.addOverlay(new GMarker(point));
 }
});

View example (click.html)

For more information about events, see the Events Overview. For a complete list of GMap2 events and the arguments they generate, see

http://www.google.com/apis/maps/documentation/ (7 of 30)16-01-2007 20:09:02

http://www.google.com/apis/maps/documentation/overlay.html
http://www.google.com/apis/maps/documentation/click.html

Google Maps API Documentation

GMap2.Events.

Display Info Windows Above Markers

In this example, we show a custom info window above each marker by listening to the click event for each marker. We take advantage of
JavaScript function closures to customize the info window content for each marker.

var map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

// Creates a marker at the given point with the given number label
function createMarker(point, number) {
 var marker = new GMarker(point);
 GEvent.addListener(marker, "click", function() {
 marker.openInfoWindowHtml("Marker #" + number + "");
 });
 return marker;
}

// Add 10 markers to the map at random locations
var bounds = map.getBounds();
var southWest = bounds.getSouthWest();
var northEast = bounds.getNorthEast();
var lngSpan = northEast.lng() - southWest.lng();
var latSpan = northEast.lat() - southWest.lat();
for (var i = 0; i < 10; i++) {
 var point = new GLatLng(southWest.lat() + latSpan * Math.random(),
 southWest.lng() + lngSpan * Math.random());
 map.addOverlay(createMarker(point, i + 1));
}

View example (markerinfowindow.html)

For more information about events, see the Events Overview. For a complete list of GMap2 events and the arguments they generate, see
GMap2.Events.

Tabbed Info Windows

Version 2 of the API introduces openInfoWindowTabs() and the GInfoWindowTab class to support info windows with multiple, named
tabs. The example below displays a simple tabbed info window above a single marker.

http://www.google.com/apis/maps/documentation/ (8 of 30)16-01-2007 20:09:02

http://www.google.com/apis/maps/documentation/reference.html#Events_GMap
http://www.google.com/search?q=javascript+function+closures
http://www.google.com/apis/maps/documentation/markerinfowindow.html
http://www.google.com/apis/maps/documentation/reference.html#Events_GMap

Google Maps API Documentation

var map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

// Our info window content
var infoTabs = [
 new GInfoWindowTab("Tab #1", "This is tab #1 content"),
 new GInfoWindowTab("Tab #2", "This is tab #2 content")
];

// Place a marker in the center of the map and open the info window
// automatically
var marker = new GMarker(map.getCenter());
GEvent.addListener(marker, "click", function() {
 marker.openInfoWindowTabsHtml(infoTabs);
});
map.addOverlay(marker);
marker.openInfoWindowTabsHtml(infoTabs);

View example (tabbedinfowindow.html)

Creating Icons

This example creates a new type of icon, using the Google Ride Finder "mini" markers as an example. We have to specify the foreground
image, the shadow image, and the points at which we anchor the icon to the map and anchor the info window to the icon.

var map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

// Create our "tiny" marker icon
var icon = new GIcon();
icon.image = "http://labs.google.com/ridefinder/images/mm_20_red.png";
icon.shadow = "http://labs.google.com/ridefinder/images/mm_20_shadow.png";
icon.iconSize = new GSize(12, 20);
icon.shadowSize = new GSize(22, 20);
icon.iconAnchor = new GPoint(6, 20);
icon.infoWindowAnchor = new GPoint(5, 1);

// Add 10 markers to the map at random locations
var bounds = map.getBounds();
var southWest = bounds.getSouthWest();
var northEast = bounds.getNorthEast();

http://www.google.com/apis/maps/documentation/ (9 of 30)16-01-2007 20:09:02

http://www.google.com/apis/maps/documentation/tabbedinfowindow.html
http://labs.google.com/ridefinder/

Google Maps API Documentation

var lngSpan = northEast.lng() - southWest.lng();
var latSpan = northEast.lat() - southWest.lat();
for (var i = 0; i < 10; i++) {
 var point = new GLatLng(southWest.lat() + latSpan * Math.random(),
 southWest.lng() + lngSpan * Math.random());
 map.addOverlay(new GMarker(point, icon));
}

View example (icon.html)

Using Icon Classes

In many cases, your icons may have different foregrounds, but the same shape and shadow. The easiest way to achieve this behavior is to
use the copy constructor for the =GIcon= class, which copies all the properties over to a new icon which you can then customize.

var map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

// Create a base icon for all of our markers that specifies the
// shadow, icon dimensions, etc.
var baseIcon = new GIcon();
baseIcon.shadow = "http://www.google.com/mapfiles/shadow50.png";
baseIcon.iconSize = new GSize(20, 34);
baseIcon.shadowSize = new GSize(37, 34);
baseIcon.iconAnchor = new GPoint(9, 34);
baseIcon.infoWindowAnchor = new GPoint(9, 2);
baseIcon.infoShadowAnchor = new GPoint(18, 25);

// Creates a marker whose info window displays the letter corresponding
// to the given index.
function createMarker(point, index) {
 // Create a lettered icon for this point using our icon class
 var letter = String.fromCharCode("A".charCodeAt(0) + index);
 var icon = new GIcon(baseIcon);
 icon.image = "http://www.google.com/mapfiles/marker" + letter + ".png";
 var marker = new GMarker(point, icon);

 GEvent.addListener(marker, "click", function() {
 marker.openInfoWindowHtml("Marker " + letter + "");
 });
 return marker;
}

// Add 10 markers to the map at random locations
http://www.google.com/apis/maps/documentation/ (10 of 30)16-01-2007 20:09:02

http://www.google.com/apis/maps/documentation/icon.html

Google Maps API Documentation

var bounds = map.getBounds();
var southWest = bounds.getSouthWest();
var northEast = bounds.getNorthEast();
var lngSpan = northEast.lng() - southWest.lng();
var latSpan = northEast.lat() - southWest.lat();
for (var i = 0; i < 10; i++) {
 var point = new GLatLng(southWest.lat() + latSpan * Math.random(),
 southWest.lng() + lngSpan * Math.random());
 map.addOverlay(createMarker(point, i));
}

View example (iconclass.html)

Draggable Markers

Markers are interactive objects that can be clicked on and dragged to a new location. In this example, we place a draggable marker on the
map, and listen to a few of its simpler events. Draggable markers support four kinds of events -- click, dragstart, drag and dragend.
By default, markers are clickable but not draggable, so they need to be initialized with the additional marker option draggable set to true.
Draggable markers are also bouncy by default. If you don't like this behavior, just set the bouncy option to false and it will drop down
gracefully.

var map = new GMap2(document.getElementById("map"));
var center = new GLatLng(37.4419, -122.1419);
map.setCenter(center, 13);

var marker = new GMarker(center, {draggable: true});

GEvent.addListener(marker, "dragstart", function() {
 map.closeInfoWindow();
 });

GEvent.addListener(marker, "dragend", function() {
 marker.openInfoWindowHtml("Just bouncing along...");
 });

map.addOverlay(marker);

View example (dragmarker.html)

Encoded Polylines

The GPolyline object within a Google map denotes a line as a series of points, making it easy to use but not necessarily compact. Long
http://www.google.com/apis/maps/documentation/ (11 of 30)16-01-2007 20:09:02

http://www.google.com/apis/maps/documentation/iconclass.html
http://www.google.com/apis/maps/documentation/dragmarker.html

Google Maps API Documentation

and complicated lines require a fair amount of memory, and often may take longer to draw. Also, the individual segments within an
unencoded polyline are drawn on a Google Map regardless of their resolution at larger zoom levels.

The Google Maps API also allows you to represent paths using encoded polylines, which specify a series of points within a GPolyline
using a compressed format of ASCII characters. The encoded polyline also allows you to specify groups of zoom levels that should be
ignored when drawing line segments; doing so allows you to specify how detailed a polyline should be at a given zoom level. Although
more difficult to set up, encoded polylines can make your overlays draw much more efficiently.

For example, a GPolyline of 3 points (2 line segments) is normally represented as:

var polyline = new GPolyline([
 new GLatLng(37.4419, -122.1419),
 new GLatLng(37.4519, -122.1519),
 new GLatLng(37.4619, -122.1819)
], "#FF0000", 10);
map.addOverlay(polyline);

An encoded GPolyline of these same points appears below (for now, don't worry about particulars of the encoding algorithm).

var encodedPolyline = new GPolyline.fromEncoded({
 color: "#FF0000",
 weight: 10,
 points: "yzocFzynhVq}@n}@o}@nzD",
 levels: "BBB",
 zoomFactor: 32,
 numLevels: 4
});
map.addOverlay(encodedPolyline);

There are two things to notice about this code.

1. First, the series of points is represented as a series of ASCII characters in the encoded polyline, while familiar latitude and
longitudes are used in the basic GPolyline. The algorithm for creating these points as a series of encoded ASCII values is
documented here. This algorithm is needed if you wish to calculate encoded polylines on the fly via a server process, for example.
However, if you just wish to convert existing points given latitudes and longitudes, you can use our interactive utility.

2. Second, the encoded polyline also allows you to specify the maximum zoom level for each line segment to draw itself on a Google
map. If a point is not shown on a higher zoom level, the path is simply drawn from the previous displayable point to the next
displayable point. Note that this feature is not available within non-encoded GPolylines and is especially useful for allowing fast
drawing at high zoom levels, where the details of some line segments may not be relevant. For example, an encoded polyline
representing a drive from New York City to Chicago should not care about the line segments representing particular streets in
Manhattan when the map is zoomed out to the state level.

http://www.google.com/apis/maps/documentation/ (12 of 30)16-01-2007 20:09:02

http://www.google.com/apis/maps/documentation/polylinealgorithm.html
http://www.google.com/apis/maps/documentation/polylineutility.html

Google Maps API Documentation

View example (polylineencoding.html)

Using XML and Asynchronous HTTP with Maps

In this example, we download a static file ("data.xml") that contains a list of lat/lng coordinates in XML using the GDownloadUrl
method. When the download completes, we parse the XML with GXml and create a marker at each of those points in the XML document.

var map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

// Download the data in data.xml and load it on the map. The format we
// expect is:
// <markers>
// <marker lat="37.441" lng="-122.141"/>
// <marker lat="37.322" lng="-121.213"/>
// </markers>
GDownloadUrl("data.xml", function(data, responseCode) {
 var xml = GXml.parse(data);
 var markers = xml.documentElement.getElementsByTagName("marker");
 for (var i = 0; i < markers.length; i++) {
 var point = new GLatLng(parseFloat(markers[i].getAttribute("lat")),
 parseFloat(markers[i].getAttribute("lng")));
 map.addOverlay(new GMarker(point));
 }
});

View example (async.html). This example uses the external XML data file data.xml.

Custom Map Controls

Version 2 of the Maps API introduces the ability to create custom map controls, like the built-in pan and zoom controls, by subclassing the
built-in GControl class. In this example, we create a simple zoom control that has textual links rather than the graphical icons used in the
standard Google Maps zoom control.

The GTextualZoomControl class defines the two required methods of the GControl interface: initialize(), in which we create the
DOM elements representing our control; and getDefaultPosition(), in which we return the GControlPosition used if another
position is not given when this control is added to a map. See the class reference for GControl for more information about the methods
you can override when you create your custom controls.

All map controls should be added to the map container which can be accessed with the getContainer() method on GMap2.

http://www.google.com/apis/maps/documentation/ (13 of 30)16-01-2007 20:09:02

http://www.google.com/apis/maps/documentation/polylineencoding.html
http://www.google.com/apis/maps/documentation/reference.html#GDownloadUrl
http://www.google.com/apis/maps/documentation/reference.html#GXml
http://www.google.com/apis/maps/documentation/async.html
http://www.google.com/apis/maps/documentation/data.xml
http://www.google.com/apis/maps/documentation/reference.html#GControl

Google Maps API Documentation

// A TextualZoomControl is a GControl that displays textual "Zoom In"
// and "Zoom Out" buttons (as opposed to the iconic buttons used in
// Google Maps).
function TextualZoomControl() {
}
TextualZoomControl.prototype = new GControl();

// Creates a one DIV for each of the buttons and places them in a container
// DIV which is returned as our control element. We add the control to
// to the map container and return the element for the map class to
// position properly.
TextualZoomControl.prototype.initialize = function(map) {
 var container = document.createElement("div");

 var zoomInDiv = document.createElement("div");
 this.setButtonStyle_(zoomInDiv);
 container.appendChild(zoomInDiv);
 zoomInDiv.appendChild(document.createTextNode("Zoom In"));
 GEvent.addDomListener(zoomInDiv, "click", function() {
 map.zoomIn();
 });

 var zoomOutDiv = document.createElement("div");
 this.setButtonStyle_(zoomOutDiv);
 container.appendChild(zoomOutDiv);
 zoomOutDiv.appendChild(document.createTextNode("Zoom Out"));
 GEvent.addDomListener(zoomOutDiv, "click", function() {
 map.zoomOut();
 });

 map.getContainer().appendChild(container);
 return container;
}

// By default, the control will appear in the top left corner of the
// map with 7 pixels of padding.
TextualZoomControl.prototype.getDefaultPosition = function() {
 return new GControlPosition(G_ANCHOR_TOP_LEFT, new GSize(7, 7));
}

// Sets the proper CSS for the given button element.
TextualZoomControl.prototype.setButtonStyle_ = function(button) {
 button.style.textDecoration = "underline";
 button.style.color = "#0000cc";
 button.style.backgroundColor = "white";
 button.style.font = "small Arial";
 button.style.border = "1px solid black";
 button.style.padding = "2px";
 button.style.marginBottom = "3px";

http://www.google.com/apis/maps/documentation/ (14 of 30)16-01-2007 20:09:02

Google Maps API Documentation

 button.style.textAlign = "center";
 button.style.width = "6em";
 button.style.cursor = "pointer";
}

var map = new GMap2(document.getElementById("map"));
map.addControl(new TextualZoomControl());
map.setCenter(new GLatLng(37.441944, -122.141944), 13);

View example (customcontrol.html)

Custom Overlays

Version 2 of the Maps API introduces the ability to create custom map overlays, like the built-in GMarker and GPolyline overlays, by
subclassing the built-in GOverlay class. In this example, we create a Rectangle overlay that outlines a geographic region on the map.

The Rectangle class defines the four required methods of the GOverlay interface: initialize(), in which we create the DOM
elements representing our overlay; remove(), in which we remove the overlay elements from the map; copy(), which copies the overlay
for use in another map instance; and redraw(), which positions and sizes the overlay on the map based on the current projection and
zoom level. See the class reference for GOverlay for more information about the methods you can override when you create your custom
overlays.

Every DOM element that makes up an overlay exists on a map pane that defines the z-order at which it will be drawn. For example,
polylines are flat against the map, so they are drawn in the lowest G_MAP_MAP_PANE. Markers place their shadow elements in the
G_MAP_MARKER_SHADOW_PANE and their foreground elements in the G_MAP_MARKER_PANE. Placing your overlay elements in the correct
panes ensures that polylines are drawn below marker shadows and the info window is drawn above other overlays on the map. In this
example, our overlay is flat against the map, so we add it to the lowest z-order pane G_MAP_MAP_PANE, just like GPolyline. See the
class reference for a complete list of map panes.

// A Rectangle is a simple overlay that outlines a lat/lng bounds on the
// map. It has a border of the given weight and color and can optionally
// have a semi-transparent background color.
function Rectangle(bounds, opt_weight, opt_color) {
 this.bounds_ = bounds;
 this.weight_ = opt_weight || 2;
 this.color_ = opt_color || "#888888";
}
Rectangle.prototype = new GOverlay();

// Creates the DIV representing this rectangle.
Rectangle.prototype.initialize = function(map) {
 // Create the DIV representing our rectangle
 var div = document.createElement("div");
 div.style.border = this.weight_ + "px solid " + this.color_;
 div.style.position = "absolute";

http://www.google.com/apis/maps/documentation/ (15 of 30)16-01-2007 20:09:02

http://www.google.com/apis/maps/documentation/customcontrol.html
http://www.google.com/apis/maps/documentation/reference.html#GOverlay
http://www.google.com/apis/maps/documentation/reference.html

Google Maps API Documentation

 // Our rectangle is flat against the map, so we add our selves to the
 // MAP_PANE pane, which is at the same z-index as the map itself (i.e.,
 // below the marker shadows)
 map.getPane(G_MAP_MAP_PANE).appendChild(div);

 this.map_ = map;
 this.div_ = div;
}

// Remove the main DIV from the map pane
Rectangle.prototype.remove = function() {
 this.div_.parentNode.removeChild(this.div_);
}

// Copy our data to a new Rectangle
Rectangle.prototype.copy = function() {
 return new Rectangle(this.bounds_, this.weight_, this.color_,
 this.backgroundColor_, this.opacity_);
}

// Redraw the rectangle based on the current projection and zoom level
Rectangle.prototype.redraw = function(force) {
 // We only need to redraw if the coordinate system has changed
 if (!force) return;

 // Calculate the DIV coordinates of two opposite corners of our bounds to
 // get the size and position of our rectangle
 var c1 = this.map_.fromLatLngToDivPixel(this.bounds_.getSouthWest());
 var c2 = this.map_.fromLatLngToDivPixel(this.bounds_.getNorthEast());

 // Now position our DIV based on the DIV coordinates of our bounds
 this.div_.style.width = Math.abs(c2.x - c1.x) + "px";
 this.div_.style.height = Math.abs(c2.y - c1.y) + "px";
 this.div_.style.left = (Math.min(c2.x, c1.x) - this.weight_) + "px";
 this.div_.style.top = (Math.min(c2.y, c1.y) - this.weight_) + "px";
}

var map = new GMap2(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());
map.setCenter(new GLatLng(37.4419, -122.1419), 13);

// Display a rectangle in the center of the map at about a quarter of
// the size of the main map
var bounds = map.getBounds();
var southWest = bounds.getSouthWest();
var northEast = bounds.getNorthEast();
var lngDelta = (northEast.lng() - southWest.lng()) / 4;
var latDelta = (northEast.lat() - southWest.lat()) / 4;

http://www.google.com/apis/maps/documentation/ (16 of 30)16-01-2007 20:09:02

Google Maps API Documentation

var rectBounds = new GLatLngBounds(
 new GLatLng(southWest.lat() + latDelta, southWest.lng() + lngDelta),
 new GLatLng(northEast.lat() - latDelta, northEast.lng() - lngDelta));
map.addOverlay(new Rectangle(rectBounds));

View example (customoverlay.html)

Geocoder Examples

You can access the Maps API geocoder directly by sending HTTP requests to Google, or you can use the GClientGeocoder object to
send those requests from within the Javascript.

Geocoding using JavaScript

The geocoder can be accessed from within the JavaScript using the GClientGeocoder object. The getLatLng method can be used to
convert an address into a GLatLng. Because geocoding involves sending a request to Google's servers, it can take some time. To avoid
making your script wait, you need to pass in a function to call after the response comes back. In this example, we geocode an address,
add a marker at that point, and open an info window displaying the address.

var map = new GMap2(document.getElementById("map"));
var geocoder = new GClientGeocoder();

function showAddress(address) {
 geocoder.getLatLng(
 address,
 function(point) {
 if (!point) {
 alert(address + " not found");
 } else {
 map.setCenter(point, 13);
 var marker = new GMarker(point);
 map.addOverlay(marker);
 marker.openInfoWindowHtml(address);
 }
 }
);
}

View example (geocoder.html)

Extracting Structured Address Information

http://www.google.com/apis/maps/documentation/ (17 of 30)16-01-2007 20:09:02

http://www.google.com/apis/maps/documentation/customoverlay.html
http://www.google.com/apis/maps/documentation/geocoder.html

Google Maps API Documentation

If you would like to access structured information about an address, GClientGeocoder also provides a getLocations method that
returns a JSON object consisting of the following information.

● Status

❍ request -- The request type. In this case, it is always geocode.
❍ code -- A response code (similar to HTTP status codes) indicating whether the geocode request was successful or not. See

the full list of status codes.

● Placemark -- Multiple placemarks may be returned if the geocoder finds multiple matches.
❍ address -- A nicely formatted and properly capitalized version of the address.
❍ AddressDetails -- The address formatted as xAL, or eXtensible Address Language, an international standard for address

formatting.
■ Accuracy -- An attribute indicating how accurately we were able to geocode the given address. See a list of possible

values.

❍ Point -- A point in 3D space.
■ coordinates -- The longitude, latitude, and altitude of the address. In this case, the altitude is always set to 0.

Here we show the JSON object returned by the geocoder for the address of Google's headquarters.

{
 "name": "1600 Amphitheatre Parkway, Mountain View, CA, USA",
 "Status": {
 "code": 200,
 "request": "geocode"
 },
 "Placemark": [
 {
 "address": "1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA",
 "AddressDetails": {
 "Country": {
 "CountryNameCode": "US",
 "AdministrativeArea": {
 "AdministrativeAreaName": "CA",
 "SubAdministrativeArea": {
 "SubAdministrativeAreaName": "Santa Clara",
 "Locality": {
 "LocalityName": "Mountain View",
 "Thoroughfare": {
 "ThoroughfareName": "1600 Amphitheatre Pkwy"
 },
 "PostalCode": {
 "PostalCodeNumber": "94043"
 }
 }
 }
 }

http://www.google.com/apis/maps/documentation/ (18 of 30)16-01-2007 20:09:02

http://www.google.com/apis/maps/documentation/reference.html#GGeoStatusCode
http://www.oasis-open.org/committees/ciq/ciq.html#6
http://www.google.com/apis/maps/documentation/reference.html#GGeoAddressAccuracy
http://www.google.com/apis/maps/documentation/reference.html#GGeoAddressAccuracy

Google Maps API Documentation

 },
 "Accuracy": 8
 },
 Point: {
 coordinates: [-122.083739, 37.423021, 0]
 }
 }
]
}

In this example, we use the getLocations method to geocode addresses, and extract the nicely formatted version of the address and
the two-letter country from the JSON and display it in the info window.

var map;
var geocoder;

function addAddressToMap(response) {
 map.clearOverlays();
 if (!response || response.Status.code != 200) {
 alert("\"" + address + "\" not found");
 } else {
 place = response.Placemark[0];
 point = new GLatLng(place.Point.coordinates[1],
 place.Point.coordinates[0]);
 marker = new GMarker(point);
 map.addOverlay(marker);
 marker.openInfoWindowHtml(place.address + '
' +
 'Country code: ' + place.AddressDetails.Country.CountryNameCode);
 }
}

View example (geocoder2.html)

Caching Geocodes

GClientGeocoder is equipped with a client-side cache by default. The cache stores geocoder responses, so that if the same address is
geocoded again, the response will be returned from the cache rather than from Google's geocoder. To turn off caching, pass null to the
setCache method of GClientGeocoder. However, we recommend that you leave caching on because it improves performance. To
change the cache being used by GClientGeocoder, use the setCache method and pass in the new cache. To empty the contents of
the current cache, use the reset method on the geocoder or on the cache directly.

Developers are encouraged to build their own client-side caches. In this example, we construct a cache that contains pre-computed
geocoder responses to six capital cities in countries covered by geocoding API. First, we build an array of geocode responses. Next, we
create a custom cache that extends a standard GeocodeCache. Once the cache is defined, we call the setCache method. There is no

http://www.google.com/apis/maps/documentation/ (19 of 30)16-01-2007 20:09:02

http://www.google.com/apis/maps/documentation/geocoder2.html

Google Maps API Documentation

strict checking of objects stored in the cache, so you may store other information (such as population size) in the cache as well.

// Builds an array of geocode responses for the 6 capitals
var city = [
 {
 name: "Washington, DC",
 Status: {
 code: 200,
 request: "geocode"
 },
 Placemark: [
 {
 address: "Washington, DC, USA",
 population: "0.563M",
 AddressDetails: {
 Country: {
 CountryNameCode: "US",
 AdministrativeArea: {
 AdministrativeAreaName: "DC",
 Locality: {
 LocalityName: "Washington"
 }
 }
 },
 Accuracy: 4
 },
 Point: {
 coordinates: [-77.036667, 38.895000, 0]
 }
 }
]
 },
 ... // etc., and so on for other cities
];

 var map;
 var geocoder;

 // CapitalCitiesCache is a custom cache that extends the standard GeocodeCache.
 // We call apply(this) to invoke the parent's class constructor.
 function CapitalCitiesCache() {
 GGeocodeCache.apply(this);
 }

 // Assigns an instance of the parent class as a prototype of the
 // child class, to make sure that all methods defined on the parent
 // class can be directly invoked on the child class.

http://www.google.com/apis/maps/documentation/ (20 of 30)16-01-2007 20:09:02

Google Maps API Documentation

 CapitalCitiesCache.prototype = new GGeocodeCache();

 // Override the reset method to populate the empty cache with
 // information from our array of geocode responses for capitals.
 CapitalCitiesCache.prototype.reset = function() {
 GGeocodeCache.prototype.reset.call(this);
 for (var i in city) {
 this.put(city[i].name, city[i]);
 }
 }

 map = new GMap2(document.getElementById("map"));
 map.setCenter(new GLatLng(37.441944, -122.141944), 6);

 // Here we set the cache to use the UsCitiesCache custom cache.
 geocoder = new GClientGeocoder();
 geocoder.setCache(new CapitalCitiesCache());

View example (geocodercache.html)

HTTP Request

To access the Maps API geocoder directly using server-side scripting, send a request to http://maps.google.com/maps/geo? with the
following parameters in the URI:

● q -- The address that you want to geocode.
● key -- Your API key.
● output -- The format in which the output should be generated. The options are xml, kml, csv, or json.

In this example, we request the geographic coordinates of Google's headquarters.

http://maps.google.com/maps/geo?q=1600+Amphitheatre+Parkway,+Mountain+View,
+CA&output=xml&key=abcdefg

If you specify json as the output, the response is formatted as a JSON object, as shown in the example above. If you specify xml or kml,
the response is returned in XML or KML. The XML and KML outputs are identical except for the MIME types.

For example, this is the response that the geocoder returns for "1600 amphitheatre mtn view ca".

<kml>
 <Response>

http://www.google.com/apis/maps/documentation/ (21 of 30)16-01-2007 20:09:02

http://www.google.com/apis/maps/documentation/geocodercache.html
http://maps.google.com/maps/geo?

Google Maps API Documentation

 <name>1600 amphitheatre mtn view ca</name>
 <Status>
 <code>200</code>
 <request>geocode</request>
 </Status>
 <Placemark>
 <address>
 1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA
 </address>
 <AddressDetails Accuracy="8">
 <Country>
 <CountryNameCode>US</CountryNameCode>
 <AdministrativeArea>
 <AdministrativeAreaName>CA</AdministrativeAreaName>
 <SubAdministrativeArea>
 <SubAdministrativeAreaName>Santa Clara</SubAdministrativeAreaName>
 <Locality>
 <LocalityName>Mountain View</LocalityName>
 <Thoroughfare>
 <ThoroughfareName>1600 Amphitheatre Pkwy</ThoroughfareName>
 </Thoroughfare>
 <PostalCode>
 <PostalCodeNumber>94043</PostalCodeNumber>
 </PostalCode>
 </Locality>
 </SubAdministrativeArea>
 </AdministrativeArea>
 </Country>
 </AddressDetails>
 <Point>
 <coordinates>-122.083739,37.423021,0</coordinates>
 </Point>
 </Placemark>
 </Response>
</kml>

If you prefer a shorter response that is easier to parse and don't need special features like multiple results or pretty formatting, we also
provide a csv output. A reply returned in the csv format consists of four numbers, separated by commas. The first number is the status
code, the second is the accuracy, the third is the latitude, while the fourth one is the longitude. The following shows replies for three
addresses, in increasing order of accuracy: "State St, Troy, NY", "2nd st & State St, Troy, NY" and "7 State St, Troy, NY"

200,6,42.730070,-73.690570
200,7,42.730210,-73.691800
200,8,42.730287,-73.692511

http://www.google.com/apis/maps/documentation/ (22 of 30)16-01-2007 20:09:02

Google Maps API Documentation

Marker Manager Examples

To use a marker manager, create a GMarkerManager object. In the simplest case, just pass a map to it.

var map = new GMap2(document.getElementById("map"));
var mgr = new GMarkerManager(map);

You may also specify a number of options to fine-tune the marker manager's performance. These options are passed via a
GMarkerManagerOptions object, which contains the following fields:

● maxZoom: specifies the maximum zoom level monitored by this marker manager. The default value is the highest zoom level
supported by Google maps.

● borderPadding: specifies the extra padding, in pixels, monitored by the manager outside the current viewport. This allows for
markers just out of sight to be displayed on the map, improving panning over small ranges. The default value is 100.

● trackMarkers: specifies whether movement of movements of markers should be tracked by the marker manager. If you wish to
have managed markers that change their positions through the setPoint() method, set this value to true. By default, this flag is
set to false. Note that if you move markers with this value set to false, they will appear in both the original location and the new
location(s).

The GMarkerManagerOptions object is an object literal, so you simply declare the object without a constructor:

var map = new GMap2(document.getElementById("map"));
var mgrOptions = { borderPadding: 50, maxZoom: 15, trackMarkers: true };
var mgr = new GMarkerManager(map, mgrOptions);

Once you create a manager, you will want to add markers to it. GMarkerManager supports adding single markers one at a time using the
addMarker() method or a collection passed as an array using the addMarkers() method. Single markers added using addMarker()
will appear immediately on the map provided that they fall within the current view and specified zoom level constraints.

Adding markers collectively using addMarkers() is recommended as it is more efficient. Markers added using the addMarkers()
method will not appear on the map until you explicitly call the GMarkerManager's refresh() method, which adds all markers within the
current viewport and border padding region to the map. After this initial display, GMarkerManager takes care of all visual updates by
monitoring the map's "moveend" events.

Zoom Level Example: Weather Map

The following example creates a mock weather map for Europe. At zoom level 3, 20 randomly distributed weather icons are displayed. At
level 6, when all 200 cities with population over 300,000 are easily distinguished, an additional 200 markers are shown. Finally, at level 8,
1000 markers are shown. (Note: to simplify the example, markers will be added at random locations.)

http://www.google.com/apis/maps/documentation/ (23 of 30)16-01-2007 20:09:02

Google Maps API Documentation

function setupMap() {
 if (GBrowserIsCompatible()) {
 map = new GMap2(document.getElementById("map"));
 map.addControl(new GLargeMapControl());
 map.setCenter(new GLatLng(41, -98), 4);
 window.setTimeout(setupWeatherMarkers, 0);
 }
}

function getWeatherMarkers(n) {
 var batch = [];
 for (var i = 0; i < n; ++i) {
 batch.push(new GMarker(getRandomPoint(), { icon: getWeatherIcon() }));
 }
 return batch;
}

function setupWeatherMarkers() {
 mgr = new GMarkerManager(map);
 mgr.addMarkers(getWeatherMarkers(20), 3);
 mgr.addMarkers(getWeatherMarkers(200), 6);
 mgr.addMarkers(getWeatherMarkers(1000), 8);
 mgr.refresh();
}

View example (weather_map.html)

Clustering Example: Google Offices

The marker manager can also perform simple clustering of markers. While it does not do so automatically, you can achieve the desired
effect by setting both the minimum and maximum zoom at which a given marker is shown. In this example we create a map of Google
offices in North America. At the highest level we show flags of countries in which offices are located. For zoom levels 3 to 7 we show icons
over population centers where one or more offices are located. Finally, at levels 8 or higher, we show individual markers for each office.

var officeLayer = [
 {
 "zoom": [0, 3],
 "places": [
 { "name": "US Offices", "icon": ["us", "flag-shadow"], "posn": [40, -97] },
 { "name": "Canadian Offices", "icon": ["ca", "flag-shadow"], "posn": [58, -101] }
]
 },
 ...
};

http://www.google.com/apis/maps/documentation/ (24 of 30)16-01-2007 20:09:02

http://www.google.com/apis/maps/documentation/weather_map.html

Google Maps API Documentation

function setupOfficeMarkers() {
 var mgr = new GMarkerManager(map);
 for (var i in officeLayer) {
 var layer = officeLayer[i];
 var markers = [];
 for (var j in layer["places"]) {
 var place = layer["places"][j];
 var icon = getIcon(place["icon"]);
 var posn = new GLatLng(place["posn"][0], place["posn"][1]);
 markers.push(new GMarker(posn, { title: place["name"], icon: icon }));
 }
 mgr.addMarkers(markers, layer["zoom"][0], layer["zoom"][1]);
 }
 mgr.refresh();
}

View example (google_northamerica_offices.html)

Troubleshooting

If your code doesn't seem to be working, here are some approaches that might help you solve your problems:

● Make sure your API key is valid.
● Look for typos. Remember that JavaScript is a case-sensitive language.
● Use a JavaScript debugger. In Firefox, you can use the JavaScript console or the Venkman Debugger. In IE, you can use the

Microsoft Script Debugger.

● Search the Maps API discussion group. If you can't find a post that answers your question, post your question to the group along
with a link to a web page that demonstrates the problem.

● See Other Resources for third party developer resources.

Other resources

Here are some additional resources. Note that these sites are not owned or supported by Google.

● Mapki is a popular wiki with information about the Maps API, including an FAQ page.

API Overview

The API Overview walks through the central concepts of the Maps API. For a complete reference of methods and classes exported by the
API, see the Maps API Class Reference.

The GMap2 class

http://www.google.com/apis/maps/documentation/ (25 of 30)16-01-2007 20:09:02

http://www.google.com/apis/maps/documentation/google_northamerica_offices.html
http://www.mozilla.org/projects/venkman/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/sdbug/Html/sdbug_17.asp
http://groups-beta.google.com/group/Google-Maps-API
http://www.mapki.com/
http://www.mapki.com/index.php?title=FAQs
http://www.google.com/apis/maps/documentation/reference.html

Google Maps API Documentation

An instance of GMap2 represents a single map on the page. You can create as many instances of this class as you want (one for each map
on the page). When you create a new map instance, you specify a named element in the page (usually a div element) to contain the map.
Unless you specify a size explicitly, the map uses the size of the container to determine its size.

The GMap2 class has methods to manipulate the map's center and zoom level and to add and remove overlays (such as GMarker and
GPolyline instances). It also has a method to open an "info window," which is the popup window you see on Google Maps. See The Info
Window for more information.

For more information about GMap2, see the GMap2 class reference.

Events

You can add dynamic elements to your application by using event listeners. An object exports a number of named events, and your
application can "listen" to those events using the static methods GEvent.addListener and GEvent.bind. For example, this code
snippet shows an alert every time the user clicks on the map:

var map = new GMap2(document.getElementById("map"));
map.setCenter(new GLatLng(37.4419, -122.1419), 13);
GEvent.addListener(map, "click", function() {
 alert("You clicked the map.");
});

GEvent.addListener takes a function as the third argument, which promotes the use of function closures for event handlers. If you want
to bind an event to a method on a class instance, you can use GEvent.bind. In the following example, an application class instance
binds map events to its own methods, modifying class state when events are triggered:

function MyApplication() {
 this.counter = 0;
 this.map = new GMap2(document.getElementById("map"));
 this.map.setCenter(new GLatLng(37.4419, -122.1419), 13);
 GEvent.bind(this.map, "click", this, this.onMapClick);
}

MyApplication.prototype.onMapClick = function() {
 this.counter++;
 alert("You have clicked the map " + this.counter + " " +
 (this.counter == 1 ?"time" : "times"));
}

var application = new MyApplication();

http://www.google.com/apis/maps/documentation/ (26 of 30)16-01-2007 20:09:02

http://maps.google.com/maps
http://www.google.com/apis/maps/documentation/reference.html#GMap2

Google Maps API Documentation

View example (bind.html)

The Info Window

Each map has a single "info window," which displays HTML content in a floating window above the map. The info window looks a little like
a comic-book word balloon; it has a content area and a tapered stem, where the tip of the stem is at a specified point on the map. You can
see the info window in action by clicking a marker in Google Maps.

You can't show more than one info window at a time for a given map, but you can move the info window and change its contents as
needed.

The basic info window method is openInfoWindow, which takes a point and an HTML DOM element as arguments. The HTML DOM
element is appended to the info window container, and the info window window tip is anchored to the given point.

The openInfoWindowHtml method is similar, but it takes an HTML string as its second argument rather than a DOM element.

To display an info window above an overlay like a marker, you can pass an optional third argument that specifies the pixel offset between
the specified point and the tip of the info window. So, if your marker is 10 pixels tall, you might pass the pixel offset GSize(0, -10).

The GMarker class exports openInfoWindow methods that handle the pixel offset issues for you based on the size and shape of the
icon, so you generally don't have to worry about calculating icon offsets in your application.

See the GMap2 and GMarker class references for more information.

Overlays

Overlays are objects on the map that are tied to latitude/longitude coordinates, so they move when you drag or zoom the map and when
you switch map projections (such as when you switch from Map to Satellite mode).

The Maps API exports two types of overlays: markers, which are icons on the map, and polylines, which are lines made up of a series of
points.

Markers and Icons

The GMarker constructor takes an icon and a point as arguments and exports a small set of events like "click". See the overlay.html
example above for a simple example of creating markers.

The most difficult part of creating a marker is specifying the icon, which is complex because of the number of different images that make up
a single icon in the Maps API.

Every icon has a foreground image and a shadow image. The shadow should be created at a 45 degree angle (upward and to the right)
from the foreground image, and the bottom left corner of the shadow image should align with the bottom-left corner of the icon foreground
image. The shadow should be a 24-bit PNG image with alpha transparency so that the edges of the shadow look correct on top of the map.

The GIcon class requires you specify the size of these images when you initialize the icon so the Maps API can create image elements of
http://www.google.com/apis/maps/documentation/ (27 of 30)16-01-2007 20:09:02

http://www.google.com/apis/maps/documentation/bind.html
http://maps.google.com/maps
http://www.google.com/apis/maps/documentation/reference.html#GMap2
http://www.google.com/apis/maps/documentation/reference.html#GMarker
http://www.google.com/apis/maps/documentation/overlay.html

Google Maps API Documentation

the appropriate size. This is the minimum amount of code required to specify an icon (in this case, the icon used on Google Maps):

var icon = new GIcon();
icon.image = "http://www.google.com/mapfiles/marker.png";
icon.shadow = "http://www.google.com/mapfiles/shadow50.png";
icon.iconSize = new GSize(20, 34);
icon.shadowSize = new GSize(37, 34);

The GIcon class also has several other properties that you should set to get maximum browser compatibility and functionality from your
icons. For example, the imageMap property specifies the shape of the non-transparent parts of the icon image. If you do not set this
property in your icon, the entire icon image (including the transparent parts) will be clickable in Firefox/Mozilla. See the GIcon class
reference for more information.

Polylines

The GPolyline constructor takes an array of points as an argument, and creates a series of line segments that connect those points in
the given sequence. You can also specify the color, weight, and opacity of the line. The color should be in the hexadecimal numeric HTML
style, e.g., use #ff0000 instead of red. GPolyline does not understand named colors.

The following code snippet creates a 10-pixel-wide red polyline between two points:

var polyline = new GPolyline([
 new GLatLng(37.4419, -122.1419),
 new GLatLng(37.4519, -122.1519)
], "#ff0000", 10);
map.addOverlay(polyline);

In Internet Explorer, Google Maps uses VML to draw polylines (see XHTML and VML for more information). In all other browsers, we
request an image of the line from Google servers and overlay that image on the map, refreshing the image as necessary as the map is
zoomed and dragged around.

Controls

To add controls like the zoom bar to your map, use the addControl method. The Maps API comes with a handful of built-in controls you
can use in your maps:

● GLargeMapControl - a large pan/zoom control used on Google Maps. Appears in the top left corner of the map.
● GSmallMapControl - a smaller pan/zoom control used on Google Maps. Appears in the top left corner of the map.
● GSmallZoomControl - a small zoom control (no panning controls) used in the small map blowup windows used to display driving

directions steps on Google Maps.

http://www.google.com/apis/maps/documentation/ (28 of 30)16-01-2007 20:09:02

http://maps.google.com/maps
http://www.google.com/apis/maps/documentation/reference.html#GIcon
http://www.google.com/apis/maps/documentation/reference.html#GIcon

Google Maps API Documentation

● GScaleControl - a map scale
● GMapTypeControl - buttons that let the user toggle between map types (such as Map and Satellite)
● GOverviewMapControl New! - a collapsible overview map in the corner of the screen

For example, to add the panning/zooming control you see on Google Maps to your map, you would include the following line in your map
initialization:

map.addControl(new GLargeMapControl());

addControl takes an optional second GControlPosition parameter that lets you specify the position of the control on your map. If this
argument is excluded, the Maps API uses the default position specified by the control. This example adds the map type control to the
bottom right corner of the map with 10 pixels of padding:

map.addControl(new GMapTypeControl(),
 new GControlPosition(G_ANCHOR_BOTTOM_RIGHT, new GSize(10, 10)));

See the GControlPosition class reference for more information.

XML and RPC

The Google Maps API exports a factory method for creating XmlHttpRequest objects that work in recent versions of IE, Firefox, and
Safari. The following example downloads a file called myfile.txt and displays its contents in a JavaScript alert:

var request = GXmlHttp.create();
request.open("GET", "myfile.txt", true);
request.onreadystatechange = function() {
 if (request.readyState == 4) {
 alert(request.responseText);
 }
}
request.send(null);

The API also exports a simpler method for typical HTTP GET requests called GDownloadUrl that eliminates the need for
XmlHttpRequest readyState checking. The example above could be rewritten using GDownloadUrl like this:

GDownloadUrl("myfile.txt", function(data, responseCode) {

http://www.google.com/apis/maps/documentation/ (29 of 30)16-01-2007 20:09:02

http://www.google.com/apis/maps/documentation/reference.html#GControlPosition

Google Maps API Documentation

 alert(data);
});

You can parse an XML document with the static method GXml.parse, which takes a string of XML as its only argument. This method is
compatible with most modern browsers, but it throws an exception if the browser does not support XML parsing natively.

See the GXmlHttp and GXml class references for more information.

Reducing Browser Memory Leaks

The Google Maps API encourages the use of function closures, and the API event handling system GEvent attaches events to DOM
nodes in such a way that almost inevitably causes some browsers to leak memory, particularly Internet Explorer. Version 2 of the Maps
API introduces a new method, GUnload(), that will remove most of the circular references that cause these leaks. You should call
GUnload() in the unload event of your page to reduce the potential that your application leaks memory:

<body onunload="GUnload()">

Using this function has virtually eliminated Internet Explorer memory leaks in Google Maps, though you should test for memory leaks on
your own site using tools like Drip if you are noticing memory consumption problems.

©2007 Google - Google Home - We're Hiring - Privacy Policy - Terms of Service

http://www.google.com/apis/maps/documentation/ (30 of 30)16-01-2007 20:09:02

http://www.google.com/apis/maps/documentation/reference.html#GXmlHttp
http://www.google.com/apis/maps/documentation/reference.html#GXml
http://jibbering.com/faq/faq_notes/closures.html
http://jibbering.com/faq/faq_notes/closures.html#clMem
http://www.outofhanwell.com/ieleak/
http://www.google.com/
http://www.google.com/jobs/
http://www.google.com/privacy.html
http://www.google.com/terms_of_service.html

	google.com
	Google Maps API Documentation

