
Google Maps API Documentation

 Google Maps API Documentation

Google Maps API
Sign up for an API key
API Documentation
API Terms of Use
API Blog
API Discussion Group

Google Desktop API
Write handy plug-ins for
Google Desktop Search.

Google AdWords API
Manage your accounts, build
new tools, pull reports, and
more.

The Google Maps JavaScript API lets you embed Google Maps in your own web pages. To use the API, you need to sign up for an API key
and then follow the instructions below.

The API is new, so there may be bugs and slightly less than perfect documentation. Bear with us as we fill in the holes, and join the Maps
API discussion group to give feedback and discuss the API.

Table of Contents

Introduction
Audience
The "Hello, World" of Google Maps
Browser Compatibility
XHTML and VML
API Updates
Geocoding, Routing, etc.

Examples
The Basics
Map Movement and Animation
Adding Controls to the Map
Event Listeners
Opening an Info Window
Map Overlays
Click Handling
Display Info Window Above Markers
Creating Icons
Using Icon Classes
Using XML and Asynchronous RPC ("AJAX") with Maps

Troubleshooting
Other resources

API Overview
The GMap class
Events
The Info Window
Overlays
Controls
XML and RPC

Class Reference
GMap

GMarker

GPolyline

GIcon

GEvent

GXmlHttp

GXml

GXslt

GPoint

GSize

GBounds

Introduction

Audience

This documentation is designed for people familiar with JavaScript programming and object-oriented programming concepts. You should
also be familiar with Google Maps from a user's point of view.

http://maps.google.com/apis/maps/documentation/v1/ (1 of 24)17-01-2007 15:09:02

http://maps.google.com/maps
http://maps.google.com/apis/maps/
http://maps.google.com/apis/maps/signup.html
http://maps.google.com/apis/maps/terms.html
http://googlemapsapi.blogspot.com/
http://groups-beta.google.com/group/Google-Maps-API
http://desktop.google.com/developer.html
http://www.google.com/apis/adwords/
http://maps.google.com/apis/maps/signup.html
http://groups-beta.google.com/group/Google-Maps-API
http://groups-beta.google.com/group/Google-Maps-API

Google Maps API Documentation

The "Hello, World" of Google Maps

The easiest way to start learning about this API is to see a simple example. The following web page displays a 300x300 map centered on
Palo Alto:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="content-type" content="text/html; charset=UTF-8"/>

 <title>Google Maps JavaScript API Example: simple</title>
 <script src="http://maps.google.com/maps?file=api&v=1&key=ABQIAAAAEfCuQGsNiSWxRgf_vfNWaRQjskl1-
YgiA_BGX2yRrf7htVrbmBTEB0IH-F489GrwP8-dHLib7cKKIQ"
 type="text/javascript">
 </script>

 <script type="text/javascript">
 //<![CDATA[

 function onLoad() {
 // The basics.
 //
 // Creates a map and centers it on Palo Alto.

 if (GBrowserIsCompatible()) {
 var map = new GMap(document.getElementById("map"));
 map.centerAndZoom(new GPoint(-122.1419, 37.4419), 4);
 }
 }

 //]]>
 </script>
 </head>
 <body onload="onLoad()">

 <div id="map" style="width: 500px; height: 300px"></div>
 </body>
</html>

You can download this example to edit and play around with it, but you'll have to replace the key in that file with your own Maps API key. (If
you register a key for a particular directory, it works for all subdirectories as well.)

The URL in the example above (http://maps.google.com/maps?file=api&v=1) is the location of a JavaScript file that includes all of
the symbols you need for placing Google Maps on your pages. Your page must contain a script tag pointing to that URL, using the key
you got when you signed up for the API. If your Maps API key were "abcdefg", then your script tag might look like this:

http://maps.google.com/apis/maps/documentation/v1/ (2 of 24)17-01-2007 15:09:02

http://maps.google.com/apis/maps/documentation/v1/simple.html
http://maps.google.com/apis/maps/signup.html

Google Maps API Documentation

<script src="http://maps.google.com/maps?file=api&v=1&key=abcdefg"

 type="text/javascript">
</script>

The main class exported by the Google Maps API is GMap, which represents a single map on the page. You can create as many instances
of this class as you want (one for each map on the page). When you create a new map instance, you specify a named element in the page
(usually a div element) to contain the map. Unless you specify a size explicitly, the map uses the size of the container to determine its size.

The methods for manipulating and adding overlays to map instances are detailed below.

Browser Compatibility

The Google Maps API supports the same browsers as the Google Local site. See the list of supported browsers on Google Local. Since
different applications require different behaviors for users with incompatible browsers, the Maps API provides a global method
(GBrowserIsCompatible()) to check compatibility, but it does not perform any automatic behavior when it detects an incompatible
browser. The script http://maps.google.com/maps?file=api&v=1 will parse in almost every browser without errors, so you can
safely include that script before checking for compatibility.

None of the examples in this document check for compatibility (other than the first example, above), nor do they display an error message
for older browsers. Clearly real applications should do something more friendly with incompatible browsers, but we have omitted such
checks to make the examples more readable.

Note that certain browsers may have particular quirks regarding JavaScript. For example, IE doesn't allow JavaScript inside tables.

XHTML and VML

We recommend that you use standards-compliant XHTML on pages that contain maps. When browsers see the XHTML DOCTYPE at the top
of the page, they execute the page in "standards compliant mode," which makes layout and behaviors much more predictable across
browsers.

If you want to show polylines on your map (like the lines used by Google Maps to show driving directions), you need to include the VML
namespace and some CSS code in your XHTML document, to make everything work properly in IE. Your XHTML document should begin
like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:v="urn:schemas-microsoft-com:vml">
 <head>
 <meta http-equiv="content-type" content="text/html; charset=UTF-8"/>

 <title>Your Page Title Here</title>
 <style type="text/css">
 v\:* {
 behavior:url(#default#VML);
 }

http://maps.google.com/apis/maps/documentation/v1/ (3 of 24)17-01-2007 15:09:02

http://local.google.com/support/bin/answer.py?answer=16532&topic=1499

Google Maps API Documentation

 </style>
 <script src="http://maps.google.com/maps?file=api&v=1&key=abcdefg"

 type="text/javascript">
 </script>
 </head>

See Microsoft's VML workshop for more information.

API Updates

The v=1 part of the URL http://maps.google.com/maps?file=api&v=1 refers to "version 1" of the API. When we do a significant
update to the API in the future, we will change the version number and post a notice on Google Code and the Maps API discussion group.

After a new version is released, we will try to run the old and new versions concurrently for about a month. After a month, the old version will
be turned off, and code that uses the old version will no longer work.

The Maps team will transparently update the API with the most recent bug fixes and performance enhancements. These bug fixes should
only improve performance and fix bugs, but we may inadvertently break some API clients. Please use the Maps API discussion group to
report such issues.

Geocoding, Routing, etc.

The Google Maps API does not include geocoding or routing services at this time; in particular, you can't specify a location using its street
address.

However, there are a number of free geocoders on the web; if you need the latitude and longitude of a particular address, you can use one
of those.

Examples

Each of the following examples shows only the relevant JavaScript code, not the full HTML file. You can plug the JS code into the skeleton
HTML file shown earlier, or you can download the full HTML file for each example by clicking the link after the example.

The Basics

The following example (the same as the code from the example shown earlier) creates a map and centers it on Palo Alto. Note that you can
drag the map around just as you can drag maps on the Google Maps site.

var map = new GMap(document.getElementById("map"));
map.centerAndZoom(new GPoint(-122.1419, 37.4419), 4);

View example (simple.html)

http://maps.google.com/apis/maps/documentation/v1/ (4 of 24)17-01-2007 15:09:02

http://msdn.microsoft.com/workshop/author/VML/ref/appendix.asp
http://code.google.com/
http://groups-beta.google.com/group/Google-Maps-API
http://groups-beta.google.com/group/Google-Maps-API
http://en.wikipedia.org/wiki/Geocoding
http://www.google.com/search?q=free+geocoder
http://maps.google.com/apis/maps/documentation/v1/simple.html

Google Maps API Documentation

Map Movement and Animation

The recenterOrPanToLatLng method recenters the map around a given point. If the specified point is in the current map viewport, the
map pans smoothly to the point; if not, the map jumps to the point.

The following example displays a map, then waits two seconds, then pans to a new center.

var map = new GMap(document.getElementById("map"));
map.centerAndZoom(new GPoint(-122.1419, 37.4419), 4);
window.setTimeout(function() {
 map.recenterOrPanToLatLng(new GPoint(-122.1569, 37.4569));
}, 2000);

View example (animate.html)

Adding Controls to the Map

You can add controls to the map with the addControl method. In the following example code, we add a GSmallMapControl (a small
version of the control that lets visitors pan and zoom the map) and a GMapTypeControl (which lets visitors switch between Map mode and
Satellite mode).

var map = new GMap(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());
map.centerAndZoom(new GPoint(-122.1419, 37.4419), 4);

View example (controls.html)

Event Listeners

To register an event listener, call the GEvent.addListener method. Pass it a map, an event to listen for, and a function to call when the
specified event occurs. In the following example code, we display the latitude and longitude of the center of the map after the visitor drags
the map.

Note that this example relies on the presence of a div tag named "message" in the HTML body, where the latitude and longitude are
displayed. See the example file for more information.

var map = new GMap(document.getElementById("map"));
GEvent.addListener(map, 'moveend', function() {
 var center = map.getCenterLatLng();
 var latLngStr = '(' + center.y + ', ' + center.x + ')';
 document.getElementById("message").innerHTML = latLngStr;

http://maps.google.com/apis/maps/documentation/v1/ (5 of 24)17-01-2007 15:09:02

http://maps.google.com/apis/maps/documentation/v1/animate.html
http://maps.google.com/apis/maps/documentation/v1/controls.html

Google Maps API Documentation

});
map.centerAndZoom(new GPoint(-122.1419, 37.4419), 4);

View example (event.html)

Opening an Info Window

To create an info window, call the openInfoWindow method, passing it a location and a DOM element to display. The following example
code displays an info window that points to the center of the map and displays a simple "Hello, world" message.

You would typically place an info window above a marker, but you can place an info window anywhere on the map.

var map = new GMap(document.getElementById("map"));
map.centerAndZoom(new GPoint(-122.1419, 37.4419), 4);
map.openInfoWindow(map.getCenterLatLng(),
 document.createTextNode("Hello, world"));

View example (infowindow.html)

Map Overlays

To add a marker to a map, first create a GPoint; then give that point as the location of a new GMarker; then pass the marker to addOverlay.

To add a polyline to a map, first create an array of points; then use those points to create a new GPolyline; then pass the polyline to
addOverlay.

The following example code creates ten random markers and a random polyline, to illustrate the use of map overlays.

Remember to add the VML namespace and the necessary CSS code; see XHTML and VML for more information.

// Center the map on Palo Alto.
var map = new GMap(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());
map.centerAndZoom(new GPoint(-122.1419, 37.4419), 4);

// Add 10 random markers in the map viewport using the default icon.
var bounds = map.getBoundsLatLng();
var width = bounds.maxX - bounds.minX;
var height = bounds.maxY - bounds.minY;
for (var i = 0; i < 10; i++) {
 var point = new GPoint(bounds.minX + width * Math.random(),
 bounds.minY + height * Math.random());
 var marker = new GMarker(point);

http://maps.google.com/apis/maps/documentation/v1/ (6 of 24)17-01-2007 15:09:02

http://maps.google.com/apis/maps/documentation/v1/event.html
http://maps.google.com/apis/maps/documentation/v1/infowindow.html

Google Maps API Documentation

 map.addOverlay(marker);
}

// Add a polyline with 4 random points. Sort the points by
// longitude so that the line does not intersect itself.
var points = [];
for (var i = 0; i < 5; i++) {
 points.push(new GPoint(bounds.minX + width * Math.random(),
 bounds.minY + height * Math.random()));
}
points.sort(function(p1, p2) { return p1.x - p2.x; });
map.addOverlay(new GPolyline(points));

View example (overlay.html)

Click Handling

To handle clicks, call GEvent.addListener and pass the 'click' event.

In the following code example, when the visitor clicks anywhere in the map, we create a new marker at that point. When the visitor clicks a
marker, we remove it from the map.

var map = new GMap(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());
map.centerAndZoom(new GPoint(-122.1419, 37.4419), 4);

GEvent.addListener(map, 'click', function(overlay, point) {
 if (overlay) {
 map.removeOverlay(overlay);
 } else if (point) {
 map.addOverlay(new GMarker(point));
 }
});

View example (click.html)

Display Info Window Above Markers

In the following example, we show a custom info window above each marker by listening to the click event for each marker. We take
advantage of function closures to customize the info window content for each marker.

// Center the map on Palo Alto.
var map = new GMap(document.getElementById("map"));
map.addControl(new GSmallMapControl());

http://maps.google.com/apis/maps/documentation/v1/ (7 of 24)17-01-2007 15:09:02

http://maps.google.com/apis/maps/documentation/v1/overlay.html
http://maps.google.com/apis/maps/documentation/v1/click.html

Google Maps API Documentation

map.addControl(new GMapTypeControl());
map.centerAndZoom(new GPoint(-122.1419, 37.4419), 4);

// Create a marker whose info window displays the given number.
function createMarker(point, number) {
 var marker = new GMarker(point);

 // Show this marker's index in the info window when it is clicked.
 var html = "Marker #" + number + "";
 GEvent.addListener(marker, 'click', function() {
 marker.openInfoWindowHtml(html);
 });

 return marker;
}

// Add 10 random markers in the map viewport using the default icon.
var bounds = map.getBoundsLatLng();
var width = bounds.maxX - bounds.minX;
var height = bounds.maxY - bounds.minY;
for (var i = 0; i < 10; i++) {
 var point = new GPoint(bounds.minX + width * Math.random(),
 bounds.minY + height * Math.random());
 var marker = createMarker(point, i + 1);
 map.addOverlay(marker);
}

View example (markerinfowindow.html)

Creating Icons

The following example creates a new type of marker, using the Google Ride Finder "mini" markers as an example. We have to specify the
foreground image, the shadow image, and the points at which we anchor the icon to the map and anchor the info window to the icon.

// Create our "tiny" marker icon
var icon = new GIcon();
icon.image = "http://labs.google.com/ridefinder/images/mm_20_red.png";
icon.shadow = "http://labs.google.com/ridefinder/images/mm_20_shadow.png";
icon.iconSize = new GSize(12, 20);
icon.shadowSize = new GSize(22, 20);
icon.iconAnchor = new GPoint(6, 20);
icon.infoWindowAnchor = new GPoint(5, 1);

// Center the map on Palo Alto.
var map = new GMap(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());
map.centerAndZoom(new GPoint(-122.1419, 37.4419), 4);

http://maps.google.com/apis/maps/documentation/v1/ (8 of 24)17-01-2007 15:09:02

http://maps.google.com/apis/maps/documentation/v1/markerinfowindow.html
http://labs.google.com/ridefinder

Google Maps API Documentation

// Create one of our tiny markers at the given point.
function createMarker(point) {
 var marker = new GMarker(point, icon);
 GEvent.addListener(marker, 'click', function() {
 marker.openInfoWindowHtml("You clicked me!");
 });
 return marker;
}

// Add 10 random markers in the map viewport.
var bounds = map.getBoundsLatLng();
var width = bounds.maxX - bounds.minX;
var height = bounds.maxY - bounds.minY;
for (var i = 0; i < 10; i++) {
 var point = new GPoint(bounds.minX + width * Math.random(),
 bounds.minY + height * Math.random());
 var marker = createMarker(point);
 map.addOverlay(marker);
}

View example (icon.html)

Using Icon Classes

In many cases, your icons may have different foregrounds, but the same shape and shadow. The easiest way to achieve this behavior is to
use the copy constructor for the GIcon class, which copies all the properties over to a new icon which you can then customize. The
following example demonstrates this icon-copying technique.

Note: this example isn't very localizable or scalable; it relies on the existence of a series of letter images corresponding to letters in the Latin-
1 codeset.

// Create a base icon for all of our markers that specifies the
// shadow, icon dimensions, etc.
var baseIcon = new GIcon();
baseIcon.shadow = "http://www.google.com/mapfiles/shadow50.png";
baseIcon.iconSize = new GSize(20, 34);
baseIcon.shadowSize = new GSize(37, 34);
baseIcon.iconAnchor = new GPoint(9, 34);
baseIcon.infoWindowAnchor = new GPoint(9, 2);
baseIcon.infoShadowAnchor = new GPoint(18, 25);

// Center the map on Palo Alto.
var map = new GMap(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());
map.centerAndZoom(new GPoint(-122.1419, 37.4419), 4);

http://maps.google.com/apis/maps/documentation/v1/ (9 of 24)17-01-2007 15:09:02

http://maps.google.com/apis/maps/documentation/v1/icon.html

Google Maps API Documentation

// Create a marker whose info window displays the letter corresponding
// to the given index.
function createMarker(point, index) {
 // Create a lettered icon for this point using our icon class from above
 var letter = String.fromCharCode("A".charCodeAt(0) + index);
 var icon = new GIcon(baseIcon);
 icon.image = "http://www.google.com/mapfiles/marker" + letter + ".png";
 var marker = new GMarker(point, icon);

 // Show this marker's index in the info window when it is clicked.
 var html = "Marker " + letter + "";
 GEvent.addListener(marker, 'click', function() {
 marker.openInfoWindowHtml(html);
 });

 return marker;
}

// Add 10 random markers in the map viewport.
var bounds = map.getBoundsLatLng();
var width = bounds.maxX - bounds.minX;
var height = bounds.maxY - bounds.minY;
for (var i = 0; i < 10; i++) {
 var point = new GPoint(bounds.minX + width * Math.random(),
 bounds.minY + height * Math.random());
 var marker = createMarker(point, i);
 map.addOverlay(marker);
}

View example (iconclass.html)

Using XML and Asynchronous RPC ("AJAX") with Maps

In the following example, we download a static file ("data.xml") that contains a list of latitude and longitude coordinates in XML. When the
download completes, we parse the XML and create a marker at each of the specified locations.

Note: If the XML file includes HTML code, be sure to encode the HTML appropriately in the XML file. For example, change all occurrences of
"<" in the HTML tags in the XML file to "<", then convert them back in your JavaScript code after dlownloading the XML file. (The XML file
used by the following example doesn't include any HTML, so it doesn't need any encoding or decoding.)

// Center the map on Palo Alto.
var map = new GMap(document.getElementById("map"));
map.addControl(new GSmallMapControl());
map.addControl(new GMapTypeControl());
map.centerAndZoom(new GPoint(-122.1419, 37.4419), 4);

// Download the data in data.xml and load it on the map. The format we
// expect is:

http://maps.google.com/apis/maps/documentation/v1/ (10 of 24)17-01-2007 15:09:02

http://maps.google.com/apis/maps/documentation/v1/iconclass.html

Google Maps API Documentation

// <markers>

// <marker lat="37.441" lng="-122.141"/>
// <marker lat="37.322" lng="-121.213"/>
// </markers>

var request = GXmlHttp.create();
request.open('GET', 'data.xml', true);
request.onreadystatechange = function() {
 if (request.readyState == 4) {
 var xmlDoc = request.responseXML;
 var markers = xmlDoc.documentElement.getElementsByTagName("marker");
 for (var i = 0; i < markers.length; i++) {
 var point = new GPoint(parseFloat(markers[i].getAttribute("lng")),
 parseFloat(markers[i].getAttribute("lat")));
 var marker = new GMarker(point);
 map.addOverlay(marker);
 }
 }
}
request.send(null);

View example (async.html). Requires external XML data file named data.xml (or you can create your own).

Troubleshooting

If your code doesn't seem to be working, here are some approaches that might help you track down the problem:

● Make sure your API key is valid for the directory where your file is.
● View your page in a different browser.
● Look at the JavaScript console in your browser, if any.
● Look for typos. Remember that JavaScript is a case-sensitive language.
● Post to the Maps API discussion group (after looking to see whether anyone else has asked a similar question

recently). Include a link to the page that's having the problem.
● See the Reference section for other forums.

Other resources

Here are some additional resources. Note that these sites are not owned or supported by Google.

● Mapki is a wiki with information about the Maps API, including an FAQ page.

API Overview
http://maps.google.com/apis/maps/documentation/v1/ (11 of 24)17-01-2007 15:09:02

http://maps.google.com/apis/maps/documentation/v1/async.html
http://maps.google.com/apis/maps/documentation/v1/data.xml
http://groups-beta.google.com/group/Google-Maps-API
http://www.mapki.com/
http://www.mapki.com/index.php?title=FAQs

Google Maps API Documentation

The GMap class

An instance of GMap represents a single map on the page. You can create as many instances of this class as you want (one for each map
on the page). When you create a new map instance, you specify a named element in the page (usually a div element) to contain the map.
Unless you specify a size explicitly, the map uses the size of the container to determine its size.

The GMap class exports methods to manipulate the map's center and zoom level and to add and remove overlays (such as GMarker and
GPolyline instances). It also exports a method to open an "info window" to display information; see The Info Window for details.

For more information about GMap, see the GMap class reference.

Events

You can add dynamic elements to your application by using event listeners. An object exports a number of named events, and your
application can "listen" to those events using the static methods GEvent.addListener or GEvent.bind. For example, the following code
snippet shows an alert every time the visitor clicks anywhere in the map:

var map = new GMap(document.getElementById("map"));
map.centerAndZoom(new GPoint(-122.1419, 37.4419), 4);
GEvent.addListener(map, 'click', function() {
 alert("You clicked the map.");
});

GEvent.addListener takes a function as the third argument, which promotes the use of function closures for event handlers. If you want
to bind an event to a class method, you can use GEvent.bind. For example:

function onLoad() {

 function MyApplication() {
 this.counter = 0;
 this.map = new GMap(document.getElementById("map"));
 GEvent.bind(this.map, 'click', this, this.onMapClick);
 }

 MyApplication.prototype.onMapClick = function() {
 this.counter++;
 alert("You have clicked the map " + this.counter +
 (this.counter == 1 ?" time.":" times."));
 }

 var application = new MyApplication();
 application.map.centerAndZoom(new GPoint(-122.1419, 37.4419), 4);

}

http://maps.google.com/apis/maps/documentation/v1/ (12 of 24)17-01-2007 15:09:02

Google Maps API Documentation

View example (bind.html)

The Info Window

Each map has a single "info window," which displays HTML content in a floating window above the map. The info window looks a little like a
comic-book word balloon; it has a content area and a tapered stem, where the tip of the stem is at a specified point on the map. You may
have seen the info window appear when you click a marker in Google Maps or Google Local.

You can't show more than one info window at once for a given map, but you can move the info window and change its contents as needed.

The basic info window method is openInfoWindow, which takes a point and an HTML DOM element as arguments. The info window
appears with its tip at the given point on the map, and it displays the DOM element in its content area.

The openInfoWindowHtml method is similar, but it takes an HTML string as its second argument rather than a DOM element.

Similarly, openInfoWindowXslt takes a point, an XML DOM element, and the URL of an XSLT document, and it applies the XSLT to the
XML to produce the info window contents. This method downloads the XSLT asynchronously if it has not already been downloaded by the
user's browser.

To display an info window above an overlay like a marker, you can pass an optional third argument: a pixel offset between the specified
point and the tip of the info window. So, if your marker is 10 pixels tall, you might pass the pixel offset GSize(0, -10). (For more
information, see the GSize class reference.)

The GMarker class exports openInfoWindow methods that handle the pixel offset issues for you based on the size and shape of the icon,
so you generally don't have to worry about calculating icon offsets in your application.

Overlays

Overlays are objects on the map that are tied to latitude/longitude coordinates, so they move when you drag or zoom the map and when you
switch projections (such as when you switch from Map to Satellite mode).

The Maps API exports two types of overlays: markers, which are icons on the map, and polylines, which are lines made up of a series of
points.

Markers and Icons

The GMarker constructor takes an icon and a point as arguments and exports a small set of events, such as "click". See the overlay
example above for a simple example of creating markers.

The most difficult part of creating a marker is specifying the icon, which is complex because of the number of different images that make up
a single icon in the Maps API. However, if you just want a generic icon, you can create a GMarker without specifying an icon.

Icons are usually in the form of stylized pushpin images, with a tip that appears at the location specified in the GMarker constructor.

http://maps.google.com/apis/maps/documentation/v1/ (13 of 24)17-01-2007 15:09:02

http://maps.google.com/apis/maps/documentation/v1/bind.html

Google Maps API Documentation

Every icon has (at least) a foreground image and a shadow image. The shadow should be created at a 45 degree angle (upward and to the
right) from the foreground image, and the bottom left corner of the shadow image should align with the bottom-left corner of the icon
foreground image. The shadow should be a 24-bit PNG image with alpha transparency so that the edges of the shadow look correct on top
of the map.

The GIcon class requires you specify the size of these images when you initialize the icon so the Maps API can create image elements of
the appropriate size. This is the minimum amount of code required to specify an icon (in this case, the icon used on Google Maps):

var icon = new GIcon();
icon.image = "http://www.google.com/mapfiles/marker.png";
icon.shadow = "http://www.google.com/mapfiles/shadow50.png";
icon.iconSize = new GSize(20, 34);
icon.shadowSize = new GSize(37, 34);

The GIcon class also exports seven other properties that you should set to get maximum browser compatibility and functionality from your
icons. For example, the imageMap property specifies the shape of the non-transparent parts of the icon image. If you do not set this property
in your icon, the entire icon image (including the transparent parts) will be clickable in Firefox/Mozilla. See the GIcon class reference for
more information.

Polylines

The GPolyline constructor takes an array of points as an argument, and creates a series of line segments that connect those points in the
given sequence. You can also specify the color, weight, and opacity of the line. The color should be in the hexadecimal numeric HTML style;
for example, use "#ff0000" for red. GPolyline does not understand named colors.

The following code snippet creates a 10-pixel-wide red polyline between two points:

var polyline = new GPolyline([new GPoint(-122.1419, 37.4419),
 new GPoint(-122.1519, 37.4519)],
 "#ff0000", 10);
map.addOverlay(polyline);

In Internet Explorer, Google Maps uses VML to draw polylines, so be sure to include the VML namespace and the relevant CSS code. (See
XHTML and VML.) In all other browsers, we request an image of the line from Google servers and overlay that image on the map, refreshing
the image as necessary as the map is zoomed and dragged around.

Controls

To add pan, zoom, or map-type controls to your map, use the addControl method. The Maps API comes with a handful of built-in controls
you can use in your maps:

GLargeMapControl
a large pan/zoom control used on Google Maps

GSmallMapControl
a smaller pan/zoom control used on Google Local

http://maps.google.com/apis/maps/documentation/v1/ (14 of 24)17-01-2007 15:09:02

Google Maps API Documentation

GSmallZoomControl
a small zoom control (no panning controls) used in the small map blowup windows used to display driving directions steps on Google
Maps

GMapTypeControl
lets the visitor toggle among map types (such as Map and Satellite)

For example, to add the panning/zooming control you see on Google Maps to your map, you would include the following line in your map
initialization:

map.addControl(new GLargeMapControl());

The control will be attached to the top left corner of the map just as it is on Google Maps.

XML and RPC

The Google Maps API exports a factory method for creating XmlHttpRequest objects that work in recent versions of IE, Firefox, and
Safari. For example:

var request = GXmlHttp.create();
request.open('GET', 'myfile.txt', true);
request.onreadystatechange = function() {
 if (request.readyState == 4) {
 alert(request.responseText);
 }
}
request.send(null);

You can parse an XML document with the static method GXml.parse, which takes a string of XML as its only argument. This method is
compatible with all browsers, falling back on a JavaScript XML parser if the browser has no native XML parsing facilities. We make no
guarantees as to the performance or correctness of this "fallback" parser.

Note that the Google Maps API does not require the use of XML or XmlHttpRequest to function, as it is a pure JavaScript/DHTML API.

Class Reference

GMap

An instance of GMap represents a single map on the page. See the discussion above for more information.

Constructor

Constructor Description

http://maps.google.com/apis/maps/documentation/v1/ (15 of 24)17-01-2007 15:09:02

Google Maps API Documentation

GMap(container, mapTypes?,
width?, height?)

Creates a new map inside of the given HTML container, which is
typically a div element. We use the default set of map types
([G_MAP_TYPE, G_HYBRID_TYPE, G_SATELLITE_TYPE]) unless
a different set is specified. Likewise, we use the size of the container
to determine the map width and height unless a width and height are
explicitly specified.

Methods

Configuration

Method Description

enableDragging() Enables dynamic dragging (enabled by default).

disableDragging() Disables dynamic dragging.

draggingEnabled() Returns true if dynamic dragging is enabled.

enableInfoWindow() Enables the info window on this map (enabled by default).

disableInfoWindow() Disables the info window on this map.

infoWindowEnabled() Returns true if the info window is enabled on this map.

Controls

addControl(control) Adds the given map control to this map.

removeControl(control) Removes the given map control from this map.

State

Method Description

getCenterLatLng()
Returns the center point of the map viewport in latitude/longitude
coordinates.

getBoundsLatLng() Returns the latitude/longitude bounds of the map viewport.

getSpanLatLng()
Returns the width and height of the map viewport in latitude/longitude
ticks.

getZoomLevel() Returns the integer zoom level of the map.

http://maps.google.com/apis/maps/documentation/v1/ (16 of 24)17-01-2007 15:09:02

Google Maps API Documentation

centerAtLatLng(latLng) Centers the map at the given point.

recenterOrPanToLatLng(latLng)
Centers the map at the given point, doing a fluid pan to the point if it is
within the current map viewport.

zoomTo(zoomLevel)
Zooms to the given integer zoom level, ignoring the request if the given
zoom level is outside the bounds of the current map type.

centerAndZoom(latLng, zoomLevel)
Atomically centers and zooms the map. Useful to initialize the map with
an initial center and zoom level, as in the examples above.

getMapTypes()
Returns an array of map types supported by this map (currently
G_MAP_TYPE, G_HYBRID_TYPE, and G_SATELLITE_TYPE).

getCurrentMapType()
Returns the map type currently in use (G_MAP_TYPE, G_HYBRID_TYPE,
or G_SATELLITE_TYPE).

setMapType(mapType)
Switches this map to the given map type (G_MAP_TYPE,
G_HYBRID_TYPE, or G_SATELLITE_TYPE).

Overlays

Method Description

addOverlay(overlay) Adds the given overlay object (GMarker or GPolyline) to the map.

removeOverlay(overlay) Removes the given overlay object from the map.

clearOverlays() Removes all of the overlays from the map.

Info Window

Method Description

openInfoWindow(latLng, htmlElem, pixelOffset?,
onOpenFn?, onCloseFn?)

Displays the info window with the given HTML
content at the given point. htmlElem should be an
HTML DOM element. If pixelOffset (GSize) is
given, we offset the info window by that number of
pixels, which lets users place info windows above
markers and other overlays. If onOpenFn is given,
we call that function when the window is displayed.
If onCloseFn is given, we call that function when
the window is closed.

openInfoWindowHtml(marker, htmlStr,
pixelOffset?, onOpenFn?, onCloseFn?)

Like openInfoWindow, but takes an HTML string
rather than an HTML DOM element.

http://maps.google.com/apis/maps/documentation/v1/ (17 of 24)17-01-2007 15:09:02

Google Maps API Documentation

openInfoWindowXslt(marker, xmlElem, xsltUri,
pixelOffset?, onOpenFn?, onCloseFn?)

Like openInfoWindow, but takes an XML element
and the URI of an XSLT document to produce the
content of the info window. The first time a URI is
given, the file at that URI is downloaded with
GXmlHttp and subsequently cached.

showMapBlowup(point, zoomLevel?, mapType?,
pixelOffset?, onOpenFn?, onCloseFn?))

Shows a blowup of the map at the given GPoint. If
the zoomLevel and mapType parameters are not
given, we default to a zoom level of 1 and the
current map type.

closeInfoWindow() Closes the info window if it is open.

Events

Event Arguments Description

click overlay, point

Triggered when the user clicks the map or an overlay on the
map. If the click was on an overlay, we pass the overlay as
an argument to the event handler. Otherwise, we pass the
latitude/longitude point that was clicked on the map.

move none Triggered when the map is moving. This event is triggered
continuously as the map is dragged.

movestart none
Triggered at the beginning of a continuous pan/drag
movement. This event is not triggered when the map moves
discretely.

moveend none
Triggered at the end of a discrete or continuous map
movement. This event is triggered once at the end of a
continuous pan.

zoom oldZoomLevel, newZoomLevel Triggered after the map zoom level changes.

maptypechanged none Triggered after the map type (Map, Hybrid, or Satellite)
changes.

infowindowopen none Triggered after the info window is displayed.

infowindowclose none Triggered after the info window is closed.

addoverlay overlay Triggered after an overlay is added to the map.

removeoverlay overlay
Triggered after an overlay is removed from the map. Not
triggered if clearOverlays is called—see the
clearoverlays event below.

http://maps.google.com/apis/maps/documentation/v1/ (18 of 24)17-01-2007 15:09:02

Google Maps API Documentation

clearoverlays none Triggered after all overlays are cleared from the map.

GMarker

GMarker is a type of map overlay that shows an icon at a single point on the map. The constructor takes an instance of GIcon, which can be
shared among many markers, and the point at which it should be displayed. GMarker also includes some convenience methods to open
info windows over the marker, which is common for Google Maps hacks.

Constructor

Constructor Description

GMarker(point, icon?)
Creates a marker with the given icon at the given point. If no icon is given, we use the
default Google Maps icon.

Methods

Method Description

openInfoWindow(htmlElem)
Opens an info window with the given HTML content over this
marker. htmlElem should be an HTML DOM element.

openInfoWindowHtml(htmlStr)
Like openInfoWindow, but takes an HTML string rather than an
HTML DOM element.

openInfoWindowXslt(xmlElem, xsltUri)

Like openInfoWindow, but takes an XML element and the URI of
an XSLT document to produce the content of the info window. The
first time a URI is given, the file at that URI is downloaded with
GXmlHttp and subsequently cached.

showMapBlowup(zoomLevel?, mapType?)
Shows a blowup of the map over this marker. We use a default
zoom level of 1 and the current map type if the zoomLevel and
mapType parameters are not given.

Events

Event Arguments Description

click none Triggered when the user clicks on this marker.

infowindowopen none Triggered when the info window is opened above this marker with one of the
methods above.

infowindowclose none Triggered when the info window above this marker is closed.

http://maps.google.com/apis/maps/documentation/v1/ (19 of 24)17-01-2007 15:09:02

Google Maps API Documentation

GPolyline

A polyline represents a vector polyline overlay on the map. A polyline is drawn with the vector drawing facilities of the browser if they are
available or an image overlay from Google servers otherwise.

Constructor

Constructor Description

GPolyline(points, color?, weight?,
opacity?)

Constructs a polyline from the given array of latitude/
longitude points. color is a hex HTML color (such as
"#0000ff"), weight is an integer representing the width of
the line in pixels, and opacity is a float between 0 and 1.

GIcon

An icon specifies the images used to display a marker on the map. For browser compatibility reasons, specifying an icon is actually quite
complex. See the discussion above for more information. Note that you can use the default Maps icon if you don't want to specify your own.

Before you can display an icon, you must specify (at a minimum) the image, shadowImage, iconSize, shadowSize, and iconAnchor
properties. If you use an info window, you must also specify the infoWindowAnchor property of the icon.

Constructor

Constructor Description

GIcon(copy?) Creates a new icon, copying the properties of the given icon if given.

Properties

Property Description

image The foreground image URL of the icon.

shadow The shadow image URL of the icon.

iconSize The pixel size of the foreground image of the icon.

shadowSize The pixel size of the shadow image.

iconAnchor
The pixel coordinate relative to the top left corner of the icon image at which we should anchor
this icon to the map.

http://maps.google.com/apis/maps/documentation/v1/ (20 of 24)17-01-2007 15:09:02

Google Maps API Documentation

infoWindowAnchor
The pixel coordinate relative to the top left corner of the icon image at which we should anchor
the info window to this icon.

printImage
The URL of the foreground icon image we should use for printed maps. It should be the same
size as the main icon image.

mozPrintImage
The URL of the foreground icon image we should use for printed maps in Firefox/Mozilla. It
should be the same size as the main icon image.

printShadow
The URL of the shadow image we should use for printed maps. It should be a GIF image since
most browsers cannot print PNG images.

transparent
The URL of a virtually transparent version of the foreground icon image used to capture IE
click events. This image should be a 24-bit PNG version of the main icon image with 1%
opacity, but the same shape and size as the main icon.

imageMap
An array of integers representing the x/y coordinates of the image map we should use to
specify the clickable part of the icon image in non-IE browsers.

GEvent

All event registration and triggering is handled by the GEvent class. All methods in the GEvent class are static methods; you should call
them using the form GEvent.bind(...) rather than (new Event()).bind(...).

Static Methods

Method Description

addListener(source, eventName, listenerFn)

Calls the given listenerFn function when the given event
is triggered on the given source instance. We return an
opaque listener token that can be used with
removeListener.

removeListener(listener)
Removes the given listener, which should be a listener
token returned by addListener.

clearListeners(source, eventName)
Removes all listeners for the given event on the given
source.

trigger(source, eventName, args...)
Triggers the given event on the given source with the given
list of arguments.

http://maps.google.com/apis/maps/documentation/v1/ (21 of 24)17-01-2007 15:09:02

Google Maps API Documentation

bind(source, eventName, object, method)

Binds the given method of the given object to the given
source event. When the given event is triggered, the given
method is called with object as the this. For example:
GEvent.bind(map, 'move', this, this.
onMapMove).

GXmlHttp

The GXmlHttp class exports a factory method to create cross-browser-compatible XmlHttpRequest instances.

Static Methods

Method Description

create() Factory method to construct a new XmlHttpRequest instance.

GXml

The GXml class provides a static method to parse a string of XML. The parser should work in any browser, though it falls back on a
JavaScript XML parser by default if there is no native parser in the web browser. That default JavaScript XML parser may be quite slow,
depending on the browser's JavaScript implementation.

Static Methods

Method Description

parse(xmlStr) Parses the given string of XML, returning the XML DOM.

value(xmlNode)
Returns the textual content in the given XML element or node. Useful to pull out the text nodes
from inside of an XML element.

GXslt

The GXslt class provides factory methods to apply XSLT to XML in a brower-independent way. The class should work on any browser,
though it falls back on a JavaScript XSLT implementation by default if there is no native XSLT processor in the web browser. That default
JavaScript XSLT processor may be quite slow, depending on the browser's JavaScript implementation.

Static Methods

Method Description

create(xsltXmlDoc) Returns a GXslt instance from the given XML DOM, which should be an XSLT document.

http://maps.google.com/apis/maps/documentation/v1/ (22 of 24)17-01-2007 15:09:02

http://www.mozilla.org/xmlextras/

Google Maps API Documentation

Methods

Method Description

transformToHtml(xmlDoc, htmlContainer)
Transforms the given XML document using this XSLT, placing
the resulting HTML in the given HTML DOM element container.

GPoint

A GPoint represents a single, 2-dimensional coordinate. If a GPoint represents a latitude/longitude, then x is the longitude and y is the
latitude, in decimal notation.

Constructor

Constructor Description

GPoint(x, y) Creates a new point with the given coordinate values.

Properties

Property Description

x The x (or horizontal) coordinate of the point.

y The y (or vertical) coordinate of the point.

GSize

GSize represents a 2-dimensional size measurement. If a GSize represents a latitude/longitude span, width is the number of longitude
degrees, and height is the number of latitude degrees.

Constructor

Constructor Description

GSize(width, height) Creates a new size with the given measurement values.

Properties

Property Description

width The width measurement.

http://maps.google.com/apis/maps/documentation/v1/ (23 of 24)17-01-2007 15:09:02

http://en.wikipedia.org/wiki/Longitude
http://en.wikipedia.org/wiki/Latitude

Google Maps API Documentation

height The height measurement.

GBounds

GBounds represents a 2-dimensional bounding box. If the GBounds is in the latitude/longitude coordinate system, the x coordinates
represent longitude and the y coordinates represent latitude. If the latitude/longitude bounds crosses the International Date Line, the
"minimum" coordinates refer to the top left coordinates rather than the mathematical minimum of the two coordinates.

Constructor

Constructor Description

GBounds(minX, minY, maxX, maxY) Creates a new bounds with the given coordinates.

Properties

Property Description

minX The x coordinate of the top left corner of the bounds.

minY The y coordinate of the top left corner of the bounds.

maxX The x coordinate of the bottom right corner of the bounds.

maxY The y coordinate of the bottom right corner of the bounds.

 ©2007 Google - Google Home - About Google - Google Maps

http://maps.google.com/apis/maps/documentation/v1/ (24 of 24)17-01-2007 15:09:02

http://maps.google.com/
http://maps.google.com/about.html
http://maps.google.com/maps

	google.com
	Google Maps API Documentation

